Title: |
Authors:
|
Abstract: The Birch and Swinnerton–Dyer (BSD) conjecture is important in modern mathematical conjectures. Since the conjecture was born in 1960, many scientists have participated in solving this problem but have not been successful. The purpose of this article is to provide a way to prove this conjecture. The article's author solves it using pure mathematical theories and does not use mathematical software to find the solution. The proof process uses functions and related knowledge. In parallel, the properties of mappings and characteristics of isomorphisms are also important for clarifying the problem. The proof process confirms the correctness of the conjecture. Due to the important nature of the conjecture, it has solved a series of problems in modern mathematics. However, like other mathematical studies, more evidence is needed to contribute to further affirm the correctness of the proposed method and the proof solution. The results of this solution have important implications for number theory, numerical structures, and coding. DOI: http://dx.doi.org/10.51505/ijaemr.2025.1209 |
PDF Download |