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Abstract  

In this paper, three models of slab on beam (T-beam) bridge with varying number of girders and 

varying spans lengths were loaded with Load Model 1 (LM1) according to Euro code 1 Part 2 

(EN 1991-2), and analysed using Finite Element Analysis, Grillage Analogy, and Courbon’s 

method. The width of the carriageway is 7.2m, and with Euro code specifications, two notional 

lanes (3m wide each) and a remaining area 1.2m wide was produced for all the models. The 

bridge was analysed for LM1 only, with the load arrangement maximised for worst effect on the 

exterior girder. In the results obtained, finite element analysis gave the most economical results 

for longitudinal bending moment and shear forces, followed closely by grillage analogy. 

However, a calibration factor was proposed for the results from Courbon’s method as a function 

of the bridge span length, which will enable Courbon’s method to be used as a quick check for 

verification of results from computer methods, since it is a very easy and quick manual method 

to apply, thereby ameliorating the limitations in the use of the method. 

Keywords: T-beam Bridge, Load Model 1, Staad Pro, Finite Element Analysis, Grillage 

Analysis, Courbon’s Method, Calibration factor 

Introduction 

A bridge is a structure designed to span over obstacles, and hence, they play important roles in 

the development of a city both in terms of transportation, aesthetics, and otherwise. The design 

of bridges has evolved over the years and a lot of solutions are considered when selecting the 

choice of bridge deck to adopt. One of the many types of bridge decks is the T-beam and slab 

system, where the slab is usually cast in-situ over precast beams. Slab and beam decks are 

economical for short and medium span bridges between 10m to 25m (Grandic et al, 2014, Praful 

and Hanumat, 2015). For beam and slab deck bridges, there may be transverse cross girders, 

while in many bridges the transverse beams in the span are omitted for reasons of simplicity of 

bridge deck construction. Bridge decks with no transverse beam(s) in the span have less effective 

but still important transverse distribution achieved by transverse beams over the supports and 

deck slab. In this case the torsional stiffness of main structural elements (longitudinal and 

transverse beams and deck slab) has a great influence on transverse load distribution (Yousif and 

Hindi, 2007). This is the commonest bridge deck concept in Nigeria. 

 

EN 1990 Annex A2 and EN 1991 Part 2 covers the design of road, rail, and foot bridges in 

Europe. Bridges are expected to be able to carry all permanent, variable, and accidental actions 
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that it may be subjected to in its design life. One of the major variable actions that bridges are 

subjected to is the load from traffic. It is pertinent to note that while traditional bridge codes used 

real vehicles for static loads, modern codes such as the Euro code replaced real traffic loads with 

artificial load models for static verification which will reproduce the real values of the effects 

induced in the bridge by real traffic. The static load model for bridges according to EN 1991-2 is 

calibrated for bridges with width less than 42m and length less than 200m. Calibration of traffic 

models for road bridges was based on real traffic data recorded in two experimental campaign 

performed in Europe between 1980 and 1994,and mainly on the traffic recorded in May 1986 in 

Auxerre on the motorway Paris  Lyon (Pietro Croce et al, 2010). 

 

In EN 1991-2, four load models are considered for vertical loads and they are; 

 Load Model 1 (LM1): This generally reproduces traffic loads which are to be taken into 

account for global and local verifications. It is made up of concentrated loads and 

uniformly distributed load. 

 Load Model 2 (LM2): This load model reproduces effects on short structural members. It 

is comprised of a single axle load on a specific rectangular tire contact areas. 

 Load Model 3 (LM3): Special vehicles to be considered on request, in transient design 

situations. It represents abnormal vehicles not complying with national regulations on 

weight and dimensions of vehicles. 

 Load Model 4(LM4): Crowd loading 

Load Model 1 

The Load Model 1 which represents the effects of normal traffic comprises of tandem axles (TS) 

superimposed over a uniformly distributed load (UDL) which its intensity remains constant with 

the loaded length. The model is very different from Type HA loading given in BD37. Type HA 

loading consists of a uniformly distributed load, the intensity which varies with the loaded 

length, and a constant Knife Edge Load (KEL) of 120 k N. There are also lane factors for 

different lengths which account for simultaneity of loading in adjacent lanes as a function of 

loaded length. Euro code (EN 1991-2) load model also differs with BD37 in the way that the 

carriageway is divided into notional lanes (Atkins Highways and Transportation, 2004). In EN 

1991-2, the notional lane width is constant at 3.0m except for a small range of carriageway width 

between 5.4m and 6.0m, when the lane width varies from 2.7m to 3.0m. (See Table 1.0) 

 

Table 1.0: Subdivision of carriageway into notional lanes (Table 4.1 BS EN 1991-2:2003) 

Carriageway 

width (w) 

Number of notional 

lanes (n) 

Width of notional 

lane 

Width of the 

remaining area 

w< 5.4m 1 3m w – 3m 
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The characteristics of the Load Model 1 according to EN 1991-2 are as shown below in Table 

2.0; 

 

 

 

 

 

 

 

 

 

The distribution and application of Load Model 1 on a typical 3 lane carriageway is as shown in 

Figure 1 below. 

 

 

 

 

 

 

 

 

 

 

5.4 w< 6m 2 0.5w 0 

6m w Int(w/3) 3m w – (3  n) 

Position Tandem Axle Load Qik 

(kN) 

UDL qik (kN/m2) 

Notional lane 1 300 9.0 

Notional lane 2 200 2.5 

Notional lane 3 100 2.5 

Other notional lanes 0 2.5 

Remaining Area 0 2.5 

Figure 1: Application of Load Model 1 on a deck with 3 notional lanes 

 

Table 2.0: Load Model 1 Characteristic Values (Table 4.2 BS EN 1991-2:2003) 
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Typical rules for Applying Load Model 1 

1. In each notional lane, only one tandem system should be considered, situated in the most 

unfavourable position. 

2. The tandem system should be considered travelling in the longitudinal axis of the bridge. 

3. When present, the tandem system should be considered in full i.e with all its four wheels 

4. The UDL’s are applied longitudinally and transversally on the unfavourable parts of the 

influence surface. 

5. The two load systems can insist on the same area. 

6. The dynamic impact factor is included in the two load systems 

7. When static verification is governed by combination of local and global effects, the same 

load arrangement should be considered for calculation of local and global effects. 

According to Ellinget al (1985), refined methods of analysis for analysing highway bridge 

superstructures and determining girder moments and loads can be classified into six categories: 

 

1. Orthotropic plate theory methods 

2. Harmonic analysis methods  

3. Grillage analogy methods  

4. Finite element methods  

5. Finite strip methods, and 

6. Folded plate methods  

 

Traffic loads on bridge decks are distributed according to the stiffness, geometry and boundary 

conditions of the deck (Ryall, 2008). In 1946 and 1950, Guy on and Massonet respectively made 

first attempts to simplify the method for analysing bridge decks using the orthotropic plate 

theory. They pioneered the principle of distribution coefficients which involved the distribution 

of live loads to a particular beam as a fraction of the total imposed load (Ryall, 2008). The work 

of Guy on and Massonet gave rise to the Guyon-Massonet method of analysis. The basic 

assumption of the distribution coefficient is that the distribution pattern of longitudinal moments, 

shears, and deflections across a transverse section is independent of the longitudinal position of 

the load and the transverse section considered (Bakht and Jaeger, 1985, Ryall, 1992). 

 

The harmonic analysis method was developed in the 1950's by Hendry and Jaeger. In this 

method, loads are distributed to the individual girders as though the slab were a continuous beam 

over non-deflecting supports, and it considers the same flexural and torsional rigidities as the 

orthotropic plate analysis, but neglects the torsional rigidity in the transverse direction (Elling et 

al, 1985). The loading is expressed as a harmonic series or Fourier sine series. Expressions for 

shear, moment, slope, and deflection are found by successive integration of this load series. 

Girder bending moments are determined by considering the above series in conjunction with 

transverse force equilibrium and slope-deflection expressions in the transverse direction 

(Goldberg and Leve, 1957). 
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Grillage analogy presents a sufficiently accurate method of analysing bridge decks for estimation 

of design bending moment, torsion, shears force etc, and has been adapted for use in most 

computer software around the world. Basically, grillage analogy method uses stiffness approach 

for analyzing the bridge decks (Jaggerwal and Bajpai, 2014). The whole bridge deck is divided 

into a number of longitudinal and transverse beams (planar grids).In the analysis, the elements of 

a grid are assumed to be rigidly connected, so that the original angles between elements 

connected together at a node remain unchanged. Both torsional and bending moment continuity 

then exist at the node point of a grid (Qaqish et al, 2008). 

The method has proved to be reliable and versatile for a wide variety of bridge decks. 

 

The finite element method seeks to replace a continuous type of structural problem, which is 

alternatively represented by a set of partial differential equations, by a set of discrete, 

simultaneous linear equations which may be readily solved by computer (Johnson, 2000). The 

discretization is achieved by sub-dividing the surface to be considered into a number of regions 

and so creating a set of elements and nodes (meshes). The accuracy of the results of a finite 

element model increases as the element size decreases (Shreedhar and Mamadapur, 2012). The 

required size of elements is smaller at areas where high loads exist such as location of applied 

concentrated loads and reactions. For a deck slab, the dividing the width between the girders to 

five or more girders typically yields accurate results. The aspect ratio of the element (length-to-

width ratio for plate and shell elements and longest-to-shortest side length ratio for solid 

elements) and the corner angles should be kept within the values recommended by the developer 

of the computer program. Typically aspect ratio less than 2 and corner angles between 60 and 

120 degrees are considered acceptable (Shreedhar and Mamadapur, 2012). 

 

According to (Elling et al, 1985), folded plate theory can be divided into two categories: (a) the 

ordinary method, in which the longitudinal behaviour of the plate is calculated according to 

beam theory, and the transverse behaviour according to one-way theory; and (b) the stiffness 

method which combines slab theory and plane stress theory. The bridge is considered as an 

assembly of individual, elastic, isotropic rectangular plate elements interconnected at the 

longitudinal joints, and simply supported at the ends. 

 

Courbon’s theory is one of the popular classic methods of analysing slab and beam girders but 

the results obtained from it are usually very unconservative. However, it is the easiest method to 

apply and does not waste time at all. It was originally developed for bridge girders with series of 

cross beams (diaphragm) in which the cross beams are stiff enough to provide adequate lateral 

stiffness. By implication, the application of the method requires that the cross beams will have a 

depth not less than 75% of the main longitudinal girders (Raju, 1986). It also requires that the 

span to width ratio of the bridge will be greater than 2 but less than 4.  According to Wuzaka 

(2014), the mechanical model allowing the analysis of the behaviour of the cross-section of the 

span subjected to a force (P) is assumed in the form of an infinitely stiff beam with elastic 

Winkler type supports. The cross-sectional deformation after loading (Figure 2c) is equal to the 
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symmetric part of the deformation after loading (Figure 2a) plus the asymmetric part of the 

deformation after loading (Figure 2b). 

 

 

 

+     

 

 

 

 

 

 

=  

 

 

 

 

 

 

 

When the beams are equally spaced and geometrically equal, the reaction factor from Courbon’s 

theory for external beams is given by (Pietro Croce et al, 2010); 

 

Ri = P  --------------------------- (1) 

 

Where; Ri = Reaction factor 

P = Applied load 

n= Number of longitudinal beams 

S = Spacing of longitudinal beams 

e1 = Eccentricity of load with respect to the centroidal axis of the bridge deck 

 

Figure 2: Mechanical Model of Courbon’s theory (Wuzaka, 2014) 

Fig. 2(a) Fig. 2(b) 

Fig. 2(c) 
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If we set P = 1.0, we can obtain the influence line pertaining to each beam. While this theory is 

not applicable to the form of the bridge deck we are considering, but due to its ease of usage, we 

are going to apply it, and then compare the answers we get with answers from FEM and grillage 

analysis. Attempt will be made to calibrate the answers gotten so that we can use it as a quick 

check when carrying out analysis. In this paper, the maximum internal stresses (longitudinal 

moment and shears) developed on the exterior girders under Load Model 1 are investigated using 

finite element model, grillage analogy, and Courbon’s theory. Then we will calibrate Courbon’s 

theory with a correction factor so that we can always use it as a quick manual check during 

analysis of bridge decks. 

 

Modelling and Methodology 

In the example considered in this paper, let us look at the bridge models shown in Figures3 to 5. 

The total width of the bridge deck is 10.1m, while the width of the carriageway (w) is 7.2m. We 

consider the bridge under different girder support conditions; three, four, and five, and also under 

varying span lengths of 15m, 20m, and 25m. The geometry of the girders and the deck slab 

remained constant throughout the whole analysis. There are no cross-girders or diaphragms in 

the bridge models considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Model 1 of the bridge system (3 girders) 

Figure 4: Model 2 of the bridge system (4 girders) 



     International Journal of Advanced Engineering and Management Research  

Vol. 4, No. 01; 2019 

ISSN: 2456-3676 

www.ijaemr.com Page 92 

 

 

 

 

 

 

 

 

 

 

 

 

Loading 

In this paper, the effect of Load Model 1 on the most exterior girder was investigated by 

arranging the load models in such a way as to maximise its effect on the exterior girder (see 

Figure 6 to see the arrangement model adopted and the position of the notional lanes). In this 

bridge model, the position of the exterior girder coincides with the position of the raised kerbs. 

Also according to EN 1991-2, traffic loads should be applied on the carriageway longitudinally 

and transversally in the most adverse position, according to the shape of the influence surface in 

order to maximise the considered load effect. In this design example, we are trying to maximise 

the load on the exterior longitudinal girder (see figure 7). 

 

Width of carriageway (w) = 7.2m 

Since w > 6.0m; Number of notional lanes (n) = int  = int  = 2.0 

Width of remaining area = w – (3  n) = 7.2 – (3  2) = 1.2m 

Also, a uniformly distributed pedestrian variable load of 5 k N/m2(clause 5.3.2.1 BS EN 1991-

2:2003) was applied on one of the sidewalks to maximise the effects on the most exterior girder 

(Girder 1 taken as a case study). See the full loading on Figure 8. This same loading arrangement 

was adopted for all the different models and a little consideration will show that the position of 

girder 1 will never change in all the analysis. For global verifications, only Load Model 1 has 

been considered. All adjustment factors were taken as .  

 

 

 

 

 

 

 

 

 

 

Figure 5: Model 3 of the bridge system (5 girders) 
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Analysis methods 

 

Finite Element Analysis 

The finite element model of the bridge was carried out on Staad Pro v8i using fine meshes for the 

plates. Each plate has a rectangular dimension of 0.1m 0.24m. This is an incentive for more 

accurate results. The longitudinal beams were modelled as T-beams and this can be seen in 

Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Application of Load Model 1 to maximise the effects on longitudinal beam 1 

Figure 6: Division of the carriageway into notional lanes and typical load values 

Figure 8: Rendered 3DFinite Element Model of Model 3 on Staad Pro V8i 
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Grillage Analysis 

Different grillage models were used to represent the various bridge deck configurations and the 

analysis was carried out using Staad Pro v8i software. A rendered 3D grillage model of the 

bridge deck (model 3) is as shown in Figure 11, while the analysis model is shown in Figure 10. 

The uniformly distributed loads were applied on the longitudinal beams; while the concentrated 

loads (tandem loads) were applied on the nodes based on their location. The nodal loads on the 

grillage can be seen in Figure 10, and the way it was generated is shown in the Figure 9 below. 

See Table 3.0 for the computation process. 

 

 

 

 

 

 

 

The concentrated load Q = 150 kN at square 1 (see Figure 1.9) is distributed to the nodes 39, 

202, 40 and 203, according to their coordinates as shown in the table below; 

 

 

For example, the total load transferred to node 40 (∑P40) is given by 13.125 + 56.875 = 70 KN. 

This method of distribution has been adopted in the entire grillage analysis. 

Plate 1 (Q = 150 

kN) 

Plate 3 (Q = 150 kN) Plate 4 (Q = 150 kN) Plate6 (Q = 150 

kN) 

P39 = 74.375 kN P160 = 116.875 kN P40 = 56.875 kN P161 = 116.875 kN 

P202 = 53.125 kN P161 = 20.625 kN P41 = 30.625 kN P162 = 48.125 kN 

P40 = 13.125 kN P223 = 10.625 kN P203 = 40.625 kN P224 = 8.125 kN 

P203 = 9.375 kN P224 = 1.875 kN P204 = 21.875 kN P225 = 4.375 kN 

Figure 9: Application of Concentrated loads to the grillage model 

Table 3.0: Distribution of tandem loads to the various nodes 
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The 3D rendering of the grillage model on Staad Pro is as shown in Figure 2.1. 

Figure 11: 3D rendering of grillage model 3 on Staad Pro Software 

Courbon’s Method 

We can verify that the reaction factor for girder number 1 when P = 1.0 is located at girder one, 

can be easily calculated using equation 1 for any number of girders.  For the model with five 

girders, the calculation process is shown below. The influence diagram is shown in Figure 12. 

Figure 10: Grillage model (for model 3) with nodal concentrated loads on Staad Pro Software 
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R1 = 1.0  = 0.60 

R2= 1.0  = 0.40 

R3= 1.0  = 0.20 

R4= 1.0  = 0 

R5= 1.0  = 0.2 

 

 

We can then place the externally applied load on the influence load distribution diagram. This is 

shown in Figure 13.In this case; we only consider the onerous part of the influence diagram, 

which implies that we will only consider the positive part of the diagram. 

 

Reading from the influence diagram 

for the concentrated loads (see Figure 

13); 

QT = (600  0.4335) + (200  0.211) 

= 302.3 kN 

For uniformly distributed loads; 

qT = (5  1.45  0.6805) + (9  3  

0.4335) + (2.5  0.3183) = 17.43 

kN/m 

 

 

 

We can now apply the concentrated load and uniformly distributed loadongirdernumber 1, 

modelled as a simply supported beam structure. See Figure 14. 

 

Figure 12: Influence diagram of 5 girder deck from Courbon’s 

method 

Figure 13: Application of external load on the influence diagram 
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Results of Analysis and Discussion 

From the finite element analysis, grillage analogy, and Courbon’s method, the maximum 

longitudinal moment and corresponding shear force due to the LM1 on the exterior girder are 

shown in Table 4.0 to 6.0 below. 

 

 

 

Length of 

Span 

3 GIRDERS 4 GIRDERS 5 GIRDERS 

Moment 

(kN.m) 

Shear 

(kN) 

Moment 

(kN.m) 

Shear 

(kN) 

Moment 

(kN.m) 

Shear 

(kN) 

15m 1419.245 338.585 1132.250 270.430 970.695 231.538 

20m 2105.823 410.266 1665.502 330.151 1433.986 295.106 

25m 2796.709 470.539 2248.720 390.565 1872.376 337.925 

30m 3485.761 537.248 2788.677 451.233 2329.213 399.312 

 

 

Length of 

Span 

3 GIRDERS 4 GIRDERS 5 GIRDERS 

Moment 

(kN.m) 

Shear 

(kN) 

Moment 

(kN.m) 

Shear 

(kN) 

Moment 

(kN.m) 

Shear 

(kN) 

15m 1554.734 346.805 1303.074 278.088 1141.496 233.687 

20m 2322.140 421.944 1887.652 327.148 1691.655 285.631 

25m 3106.193 475.834 2531.246 382.437 2298.172 349.018 

Figure 14: Application of load values derived from influence diagram on girder No 1 (Model 3) 

Table 4.0: Results from finite element analysis 

Table 5.0: Results from grillage analysis 
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30m 3879.663 544.690 3133.678 431.567 2867.200 402.681 

 

 

 

Length of 

Span 

3 GIRDERS 4 GIRDERS 5 GIRDERS 

Moment 

(kN.m) 

Shear 

(kN) 

Moment 

(kN.m) 

Shear 

(kN) 

Moment 

(kN.m) 

Shear 

(kN) 

15m 2425.57 417.87 2039.69 351.17 1623.95 281.90 

20m 3548.97 480.84 2983.63 403.98 2383.19 325.49 

25m 4829.79 543.82 4059.58 456.00 3251.40 369.07 

30m 6268.01 606.78 5267.55 509.59 4228.13 412.60 

 

A little observation of the results will reveal that finite element analysis gave the most 

economical results in terms of bending moment and shearing forces. The results also indicate 

that the difference in the results between the longitudinal bending moment from finite element 

analysis method and grillage analysis increases with the number of girders and length of span. 

The greatest difference in the results of the longitudinal moment was found in Model 3 (5 

girders) at 25m span length with a difference of 18.527% (grillage analogy has been compared 

against FEM). The smallest value of difference was found in Model 1 (3 girders) at 15m span 

length with a difference of 8.714%.  

In terms of shear force, the difference in results between grillage and finite element analysis were 

very small when both values were compared. The highest difference in the values when shear 

grillage results was compared with FEM shear results was -3.3172% which was found at Model 

3 (20m span length). The approximate nature of both FEM and grillage analysis meant that 

variation in results obtained can occur from reasons stemming from various causes (see Table 

7.0 for comparison results). However, a plot of variation of internal stresses with span length for 

all the methods employed showed a very linear relationship for both bending moment and 

shearing force (see Figures 15 and 16).  

The difference obtained when using Courbon’s method was very wide (about 40% for 

longitudinal moment when compared against FEM), and this can also be justified, given that the 

method was applied here just to see if we can calibrate the results from it for checking results 

from finite element analysis, since it is a very cheap and fast method. 

 

Table 6.0: Results from Courbon’s method 
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The variation of longitudinal bending moment for Model 1 (3 Girders) using the three different 

methods for the varying spans is shown in Figure 15. 

 

 

Similarly for the variation of shear force for 3 girders model is shown in Figure 16; 

Length FEM and 

GRILLAGE 

(3 girders) 

FEM and 

GRILLAGE 

(4 girders) 

FEM and 

GRILLAGE 

(5 girders) 

Moment Shear Moment Shear Moment Shear 

15m 8.714% 2.370% 13.104% 2.753% 14.962% 0.9196% 

20m 9.315% 2.767% 11.768% -0.918% 15.323% -3.3172% 

25m 9.963% 1.1127% 11.161% -2.125% 18.527% 3.1783% 

30m 10.153% 1.3663% 11.001% -4.556% 18.763% 2.404% 

Figure 15: Variation of longitudinal bending moment for 3 Girder Bridge using different methods 

Table 7.0: Comparison of results between FEM and grillage analysis 
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For the whole models represented, the full regression equations for moment and shear are as 

shown in Table 8.0. 

 

Number 

of girders 

Method Moment Regression 

Equation 

Shear Regression Equation 

3 FEM M = 137.8x – 648.8 (R2 = 

1.0) 

Q = 13.12x+143.8 (R2 = 

0.999) 

Grillage M = 149.1x – 665.8   (R2 = 

0.998) 

Q= 12.95x+155.9 (R2 = 

0.996) 

Courbon M = 256.1x – 1495.0 (R2 = 

0.998) 

Q = 12.59x + 228.9 (R2 = 1.0) 

4 FEM M = 111.0x – 539.8 (R2 = 

0.999) 

Q = 12.05x+89.32 (R2 = 1.0) 

Grillage M = 122.7x – 547.0(R2 = 

0.999) 

Q= 10.31x+122.7 (R2 = 

0.999) 

Courbon M = 215.1x – 1254.5(R2 = 

0.997) 

Q= 10.54x + 192.9 (R2 = 1.0) 

Figure 16: Variation of shear force for 3 Girder Bridge using different methods 

Table 8.0: Regression equations for bending moment and shear force across the different models 
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If we attempt to compare the results from Courbon’s theory with finite element analysis, we can 

obtain what can be described as a calibration factor (Cf), which can be used to factor Courbon’s 

method results to fit within the range of finite element analysis results. The variation of the 

longitudinal bending moment results between Courbon’s method and Finite Element Analysis 

(which is the calibration factor) can be shown by the curves in Figure 17 below. 

 

 

The calibration equations for bending moment are explicitly given in Table 9.0 below; 

 

 

 

5 

FEM M = 90.27x – 379.7 (R2 = 

0.999) 

Q = 10.92x+70.20 (R2 = 

0.994) 

Grillage M = 115.6x – 603     (R2 = 

0.999) 

Q= 11.40x+61.08 (R2 = 

0.998) 

Courbon M = 173.6x – 1034.6R2 = 

0.996) 

Q = 8.713x + 151.2 (R2 = 1.0) 

Number of girders Regression Calibration Equation for 

moment 

R2 

3 Cfm = 0.000312x2 + 0.01202x + 0.4757 0.9872 

Figure 17: Variation of bending moment calibration factor between FEM and Courbon’s 

method 

Table 9.0: Calibration factor for Courbon’s method longitudinal bending moment 
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Therefore having obtained the calibration factors for moment as a function of the span of the 

bridge, it means that within the specified range in this study, any bending moment obtained using 

Courbon’s method (MCourbon) can be calibrated using the calibration factor for moment (Cfm) to 

obtain an approximate equivalent FEM bending moment value (Mf). We can verify that the 

calibration factor for moment reduces as the bridge span increases.  

Hence, Mf MCourbon Cfm -----------------------------  (2) 

We can also attempt such calibration equation for shear and the plot of the variation is shown in 

Figure 18. 

 

 

The calibration equations for shear are explicitly given in Table 10.0 below; 

 

 

 

4 Cfm = 0.000277x2 + 0.01084x + 0.454 0.9847 

5 Cfm = 0.00029x2 + 0.009718x + 0.5187 0.9712 

Number of girders Regression Calibration Equation for 

Shear 

R2 

3 Cfq = 0.0002282x2 + 0.01502x + 0.6383 0.9748 

Figure 18: Variation of calibration factor for shear forces between FEM and Courbon’s method 

Table 10.0: Calibration factor for Courbon’s method shear forces 
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Hence, Qfem  QCourbon Cfq  -----------------------------  (3) 

Application Example 

To show how the calibration factor can be applied for bending moments, let us consider the work 

of (Praful and Hanumat, 2015) on a 3 girder bridge supporting Class AA tracked vehicle (IRC 

code). The bridge deck has five (5) cross girders. 

The results from his analysis for the live load are as shown in Table 11.0; 

 

Span Bending Moment (kN.m) 

Courbon FEM 

16m 2730.03 1639.381 

20m 3929.14 2141.054 

 

For span x = 16m; Calibration factor, Cfm = Cfm = 0.000312(16)2 + 0.01202(16) + 0.4757= 

0.5881 

Hence, approximate FEA moment (Mf) Cfm  MCourbon = 0.5881 2730.03 = 1605.531 KNm 

(compare with 1639.381 KNm) 

For span x = 20m; Cfm = 0.000312(20)2 + 0.01202(20) + 0.4757 = 0.5875 

(Mf) Cfm  Mcourbon = 0.5875  3929.14 = 2308.212 KNm (compare with 2141.054 KN. m) 

 

Conclusion 

In this paper, it has been shown as consistent with many other works, that FEM analysis yields 

lower and more economical results as grillage analysis for bridge decks. The longitudinal 

bending moment and shear forces increases as the bridge span increases, but reduces as the 

number of longitudinal girders increases. However, both can be conveniently employed for the 

purpose of analysis and design. Furthermore, if we observe the results of the calibration of 

internal stresses gotten from Courbon’s method, we can confidently apply them on bridges with 

4 Cfq = 0.0001824x2 + 0.01592x + 0.721 1.000 

5 Cfq = 0.0003316x2 + 0.02389x + 0.5435 0.9352 

Table 11.0: Class AA tracked vehicle live load analysis results (Praful and Hanumat, 2015) 
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and without cross girders, and obtain very reasonable and comparable answers for internal 

stresses (moment and shear). Given that these factors are derived using Load Model 1 of EN 

1991-2, care should be taken when applying it for other load models, or for loadings involving 

tandem axles only (especially for shearing forces). This is due to the difference in distribution of 

shearing forces for concentrated loads and uniformly distributed loads. However, for bending 

moment values, the difference will not be much.  Hence, the calibration factors can be used for 

design purposes, or more especially for making very quick checks of answers gotten from FEM 

when analysing T-beam bridge decks within the applied range. 
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