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Abstract  

Hydrogen as a green secondary of energy is one of the most promising solutions for our future 

energy supply. Hydrogen can be ideally used as a link between the energy sectors of electricity, 

heat and mobility and reduces the use of fossil energy sources in present. Green hydrogen 

production will fundamentally change our energy economy. 

Fuel cells as an energy conversion system with Hydrogen increase the overall efficiency, 

reducing greenhouse gas emissions and the dependencies of fossil energy sources.  

This article shows the context between the primary energy sources and fuel cell applications. The 

efficiency chain and the environment dependencies are explained unequivocally. The aim of the 

scientific paper is to show the possible consequences of environmental impacts using hydrogen 

as an energy source in hydrogen business applications. 

Methodologically the proposed model is used on two case studies, to determine greenhouse gas 

emissions to reveal the different dependency of fuel and application. The latest data´s of 

hydrogen production and fuel cell applications are implemented in the model. 

The results of the research show the crucial aspects to use hydrogen as a secondary energy 

carrier in two case studies. The results can help all groups and institutions that want to deal with 

hydrogen and their energy conversion processes to get a better understanding from an 

environmental and technical view. 

Keywords: Green Hydrogen, Fuel Cells, Fuel Cell Vehicles, Fuel Cell heating Systems, 

Environmental Impact. 

Introduction 

Today's energy conversion processes with fossil fuels substantially contribute to global warming 

and climate changes. [IPCC 2018, IPCC 2014, Le Quere 2014, Schönwiese 2019, Hutter 2018]. 

The daily flow of crude oil is over 92 million barrels [ENI 2018, IEA 2018]. Reducing man-

made anthropogenic greenhouse gases by burning fossil fuels requires new ideas and concepts 

for energy conversion systems.  
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In order to achieve the global climate targets, which were agreed in Paris [UN 2015], rapid 

action is required to reach the 2°C scenario [Hansen 2015, Crastan 2015, Peterson 2015] keeping 

the warming process in human hands [Nerem 2018, Lüdtke 2018, Ibisch 2018] 

 

On solution is using H2 as a secondary energy source produced out of a renewable energy source 

(green H2) for the energy supply [Emonts 2018, Machhammer 2015, Tetzlaff 2011, Quaschning 

2016, Quaschning 2013, Stern 2018, Töpler 2012]. Sustainable green hydrogen production could 

be a future strategy for a new hydrogen economy. Decentralized highly efficient and smart grid 

compatible energy conversion systems driven with locally produced hydrogen can be one key 

energy strategy in the future. Producing energy where is it needed in small and very highly 

efficient energy conversion systems [Staiger 2016a, 2016b, 2017] 

There are different definitions and views how hydrogen economic could work. The indicator of a 

true hydrogen economy is to supply the end user with hydrogen. The latest energy conversion to 

power and heat takes place with the end user. 

 

 This has the following advantages: 

 

 Cogeneration in each building (CHP) with highly efficient fuel cell systems, 

 Excess electricity in every building (enabling cheap electric heater), 

 Mobility with Hydrogen cars (fuel cell driven) or electrical vehicle’s, 

 Cost distribution of electricity and heat through a pipe network.  

 

Stationary and mobile application with fuel cells as an energy conversion system, driven with H2 

fuel produced out of renewable sources will help moving in a sustainable energy future [Emonts 

2018, Fang 2015, Staiger 2018] 

 

Scientific aspects 

 

Transforming Process for producing green H2 

To analyze and understanding how energy is converted the different energy sources like primary, 

secondary, final and usable energy terms must be defined [Baehr 2006, Fritsche 2015, 

Quaschning 2016]. The naturally occurring energy sources defined as primary energy sources. 

This is divided into renewable (inexhaustible) and non-renewable (exhaustible) energy sources. 

The dilemma with nearly all energy sources is conversion loses from one energy type in another 

[Baehr 2006, Kramer 2014, Allelein 2013, Quaschning 2016,].  Table 1 shows the efficiency of 

different energy conversion systems. 
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Table 1. Efficiency of energy conversion systems [Baehr 2006, Kramer 2014,Quaschning 2016] 

Energy conversion systems Efficie

ncy    

Geothermal power plant 10% 

Parabolic trough power plant 15% 

Solar cell 15% 

Fuel cells (electricity + heat) 80-95% 

Wind generators 45% 

Nuclear power 30-40% 

Coal generators 30-40% 

Solar panels 70% 

Combined cycle power 

generator 

60% 

Wood gas power plant 80% 

Hydro generators 80% 

CHP Combined heat and 

power 

90% 

Table 1 shows different power plant types and their current efficiencies. 

Table 2. Efficiency of different hydrogen processes [Baehr 2006, Kramer 2014, Quaschning 

2016] 

Processes Efficiency 

% 

Trend 

% 

Primary energy oil, petrol 82 % equal 

Primary energy oil, diesel 90 % equal 

Generation electricity from coal generator 30 - 40 %  

Generation electricity from a gas generator 50 %  higher 

Distribution losses over powerlines and 96 % higher 
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transformer 

H2-Production 

Electrolysis Alkaline 
70 – 80% 

80 -90 

% 

Electrolysis High temperature 80 % 90% 

Reformer (CH4) 80 % 90 % 

Steam Reformer 80 % 90 % 

Biogas Steam Reformer 80 % 90 % 

compressed Hydrogen 90 % 90 % 

Liquid Hydrogen 70 % 80 % 

Applications 

FCEV (Input to Wheel) 50 % 55 % 

BEV (Input to Wheel) 70 – 75% 80 % 

Petrol/Diesel car (Input to Wheel) 16- 24 % same 

Hybrid vehicles (ICE internal combustion 

engine) 
20 – 25% 

25 % 

Fuel Cell (55 % electrical/45 % thermal) 80- 90 % 95 % 

Micro CHP 80 – 95% 95 % 

 

Table 2 shows the different necessary processes and their efficiencies for the production of 

hydrogen. Furthermore, a column of the table it is illustrated the trend of the possible efficiencies 

in an optimistic scenario. 

Different ways for producing hydrogen today are presented in table 3 [Machhammer 2015, Fang 

2017, Dincer 2016]. Today’s hydrogen production is mostly done through fossil energy sources 

in the chemical industry so called grey hydrogen [Godula 2015, Tezlaff 2011, Ayers 2017]. 

Table 3. Today’s H2 production with fossil energy sources 

Process Fuel type efficie

ncy 

CO2 

impact 
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Thermal 

reformer 
CH4 < 80 % 

Huge 

impact 

Patrial 

oxidation 
Fossil < 80 % 

Huge 

impact 

Kvaerner 

process 
Fossil < 95 % 

Little 

impact 

Electrolysis 

fossil 
Fossil < 80 % 

Huge 

impact 

Steam 

reformer 
Biomasse < 80 % 

Carbon 

neutral 

Electrolysis PV/Wind/Wasserkr

aft 
< 80 % No impact 

 

Fuel Cell applications, efficiency and environmental impact 

Fuel cell is a device for converting chemical energy in electricity and heat (cold burning process) 

with an efficiency of over 80 to 90% [Vielstich 2003, Niederhausen 2014, Blomen 1993, 

Kurzweil 2013, Barbir 2011].  

Chemical Principle of a polymer Electrolytic FC (PEM) 

The entire chemical reaction in PEM fuel cells can be described by the equation: 

  2H2 (gas) + O2 (gas) → 2H2O (liquid)  [1] 

 

Figure 1. PEM Fuel Cell chemical reaction [H-Tec 2016] 
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Fuel Cell Types 

Depending of the different applications, different fuel cell types are available today on the 

market.  

Table 4. FC types, specification and applications [Kurzweil 2013, Barbir 2011, Töpler 2014, 

Staiger 2016] 

Type Fuel Type 
Operation Temp 

°C 

Elect. 

Efficiency % 

Energy 

density W/cm² 
Applications 

AFC 

Alkaline FC 

H2 60-80°C 60%  Space program, Military (submarines) 

PEFC 

Proton 

Exchange 

CH3OH 

Methanol 
80°C 40-50%  

Power supplies, Car/Bus, Home heating, 

CHP, USV up to 250kW 

DMFC 

Direct 

Methanol 

H2 80-100°C 40-50% 0,6 W/m² Development phase 

PAFC 

Phosphoric 

Acid 

H2 200°C 40-45% 0,2 W/m² CHP´s, Power generators > MW 

MCFC 

Molten 

Carbonate FC 

H2 (CH4) 

Biogas 
650°C 55-60% 0,1 W/m² CHP´s, Power generators > MW 

SOFC 

Solid FC 

H2 (CH4) 800-1000°C 60% 0,4 W/m² Home heating, power generators 

 

The common fuel cell will be the PEM Type. For lager CHP the PAFC and MCFC types. For 

mobile and stationary application, the PEM type is in common. 

 

The environmental impact using H2 with fuel cell systems 

Hydrogen is the first element of the periodic table of the elements. Hydrogen usually occurs 

under ambient conditions to a molecule consisting of two hydrogen atoms (H2). The most 

common element in the universe, represents about 90% of all atoms, approximately ¾ of the total 

mass. Atomic hydrogen reacts with organic compounds (Carbone element C) to form complex 
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mixtures of different products. As an example: Methane CH4, Petrol C6 H12. In nearly all organic 

compounds, H2 is integrated (decarburization) [Riedel 2015]. 

Chemical basics and CO2 emissions 

The stoichiometry is based on the conservation of mass: The mass of the starting materials is 

equal to the mass of the reaction products. This may be determined as the amount of CO2, which 

is produced during the combustion of various fuels [Riedel 2015, Schwarzbach 2010] 

Table 5.  Chemical equations 

 Chemical 

Elements 

 Chemical 

Elements 

 Reaction 

Product 

ΔHR 

Hydrogen combustion (chemical reaction of a Fuel Cell) 

Elements 2 H2 + O2  2 H2O 

-572 kJ/mol 

Molecular Mass 2* (2*1) + 1* (2*16)  2* (2*1+16) 

Mass equation 4 + 32  36 

Mass per g 1 + 8  9 

chemical equation for reforming process (fuel cell heating systems) 

Elements CH4 + 2H2O  4H2 +CO2 

165 KJ/mol 

Molecular Mass 

g/Mol 

12+(4*1)  2(2*1+16)  4(2*1)+12+2*

16) 

Mass equation 16  36  8+44 

Mass per g 1  2,25  0,5 + 2,75 

carbon combustion 

Elements C + O2  CO2 

-393 kJ/mol 

Molecular mass 12  16*2  12 + 2*16 

Mass Equitation 12  32  44 

Mass per g 1g  2,66  3,66 

In the table 5 are presented different chemical reactions of hydrogen conversion with individual 

masses and energy quantities are shown [Riedel 2015, Schwarzbach 2010, own contribution]. 
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Methodology 

For the environmental energy conversion model with hydrogen (Figure 2), following parameters 

for calculation purpose and comparisons are essential for the process: Efficiency of the primary 

energy conversion, Type of primary energy sources and Type of fuel cell application with 

efficiency parameter. 

The input data´s are from official studies, research and latest scientific publication. An identical 

reference model for fossil energy sources compares (mirrored) the data with the hydrogen model. 

An assessment is made with the data and shown in an evaluation table. 
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Figure 2. Environmental Energy Conversion Model (EECM) 

Efficiency 

       [2] 

Total efficiency  

     [3] 

         [4] 

Total Environmental Impact (TEI) 

      [5] 
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       = Primary Energy Factor 

   = CO2 conversion factor [KEA 2015, IINAS 2015] 

        = Total Environmental Impact 

Research Analysis and Results 

 

The research results are compared for a mobile and for a stationary system.  

Stationary Systems: Fuel Cell Heating Systems (FCH) 

Alternative heating appliances with an integrated chemical energy converter” (Fuel Cell, Cold 

burning process) which operates with H2 is far more efficient as a fossil driven Carnot cycle 

system [Staiger 2016a]. The FCH System produces thermal and electrical energy like in a 

conventional CHP System. Today’s FCH Systems are using fossil gas for operation. To operate 

the FC, H2 is necessary. For this reason, a reformer is used to generate the H2 part out of a fossil 

fuel like CH4. Today’s FCH systems are not powerful enough to cover the thermal energy 

demand in standard buildings. For these reasons on top of the FCH System a condensing gas 

boiler is integrated [Staiger 2017]. The exhaust of Fuel Cells is pure water but over the reformer 

and condensing gas boiler it will pollute similar emission like on condensing gas boiler.  

Reforming Process and Environmental impact today 

The amount of CO2 of the reforming process (see above) can be calculated with the chemical 

stoichiometry.  Molecular mass is: Methane = 16g, Carbon Dioxide = 44g, Water 18g, Hydrogen 

=1g [periodic] Molecular mass equation: 

16g+ 36g = 8g + 44g    1kg H2    5.5kg CO2 

With the energy contents of 33.33 kWh/kg H2    CO2 equivalent    166 g CO2 /kWh  

 

Figure 3. Efficiency of fuel cell heating systems today (Staiger 2016a) 
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Mobile Systems 

Batterie electrical Vehicles 

Electrical cars in compare to conventional cars with a combustion engine having huge 

advantages. A normal combustion engine car has efficiency (tank to wheel) of less than 25 %. 

[Schreiner 2015, Cornel 2015, Tschöke 2015]. Electrical cars in compare have an efficiency of 

ca. 70-80 %. The amount of fuel with an electrical car is less the 70 % of a combustion engine 

car. The problem in present is the battery system and the maximum driving distance as well the 

investment cost and the possible payback time [Grube 2018]. Figure 4 shows the flow of 

efficiency of a present electrical vehicle. 

 

Figure 4. Efficiency of an e mobility car with batteries (own contribution) 

Fuel Cell cars 

The principal of a fuel cell car is similar like an electrical vehicle. Instead of a battery a tank with 

hydrogen provide the energy for the car. The efficiency (tank to wheel) is less than an electrical 

car because of the energy losses of the fuel cell. In compare to an electrical vehicle the efficiency 

is ca. 45-50 % [Cornel 2015, Tschöke 2015]. Depending of the hydrogen fuel more or less 

emissions will be generated. Figure 5 shows the principal of a fuel cell car. 

 

Figure 5. Efficiency of fuel cell hydrogen car (own contribution) 
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For this research work, two case studies are taken that will make an important contribution to the 

energy transition in the future. An example in the mobility sector is fuel cell vehicles and electric 

vehicles. In the stationary area micro combined heat and power plants or fuel cell heating 

systems in compare a conventional gasification oiler with standard electricity from the grid. 

Environmental chain for fuel cell heating systems and for mobility application 

 

Table 6.  Energy Chain from Well to Wheel as an example for different fuel types 

Type Fuel type 

Chain 1 

Car % 

Chain 2 

% 

Chain 3 

% 

Chain 

4 % 

Chain 5 

% 

Total 

% 

Car 

petrol 

 

Petrol 20 %    80 % 16 % 

Car with 

batteries 

Fossil 

Coal 
75 %   35 % 80 % 21 % 

Car with 

batteries 
PV 75 %   15 %  11 % 

Car with 

fuel cell 
Fossil 50 % 

90 % 

compression 

80 % 

electrolysis 

35 % 80 % 10 % 

Car with 

fuel cell 
PV 50 % 

90 % 

Compression. 

80 % 

electrolysis 

15 %  5,5 % 

 

Table 6 shows the different efficiency chains for the following calculations. These are the basics 

for case studies calculations. 

Chain 1 is the efficiency of the technical appliance for example car or fuel cell heating system. 

Chain 2 and 3 are special processes for compressing hydrogen on high pressure and producing 

hydrogen with electrolysis from water. Chain 4 is the efficiency of the power generator (for 

example coal, gas or renewable energy source). Chain 5 are the distribution losses over high 

power lines and transformers in the energy infrastructure. Chain Well to Wheel: the total chain 

from production to the energy output on the wheels 
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Short form: 

Chain 1 = Efficiency appliances (car), Chain 2 = H2 compression 700 bar, Chain 3 = 

electrolysis, Chain 4 = energy conversion electricity (generators, distribution loses), Chain 5= 

primary energy factor 1,2 

Case Study 1: Mobility application petrol car with 50 kW power as a reference 

For this example, the car needs 15 kWh energy for 100 km (ca. 8 l/100km). This would be a 

normal middle-class Car. 

Chain Well to Tank  Taking into account losses in production, refining, exploration, drilling 

and transportation / delivery of fossil fuels (well-to-tank) here factor 1,2.  

 

Table 7.  Energy Chain from Well to Wheel as an example for different fuel types range 100 km 

Application 
CO2 impact 

kg/kWh 

Energy amount 

on the wheel 

Total 

efficiency 

Total 

primary 

energy 

CO2 kg 

Primary Energy 

CO2 gr 

per km 

Reference system 

Car with Petrol 0,287 15 kWh 16 % 93 kWh 26 kg 260 gr 

Alternatives 

Car with 

batteries Coal 
0,7 15 kWh 21 % 71 kWh 49 kg 490 gr 

Car with 

batteries PV  
0,01 15 kWh 11 % 125 kWh 1,25 kg 12 gr 

Car with fuel 

cell fossil 
0,57 15 kWh 10 % 150 kWh 85 kg 850 gr 

Car with fuel 

cell PV 
0,01 15 kWh 5,5 % 272 kWh 2,7 kg 27 gr 

The result of the analysis in table 7 shows, electrical cars with batteries charging with a 

renewable energy source (PV) have the best environmental impact. Fuel cell driven cars with H2 

produced out of a fossil energy source (electrolysis with standard electricity) has the worst 

environmental impact. If H2 would be produced out of a renewable source like PV, Wind, or 

Hydro the environmental impact would be 30 times less then produced out of a fossil energy 

source. 

Case Study 2: Fuel cell heating system with 12kW power reference condensing gas boiler 

For this case study following parameter are used for the Fuel Cell heating applications. 
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Table 9.   Parameter for Fuel Cell Heating application 

Parameters Data 

Output Power of the Heat appliances P 

(a×b) 

 12 kW 

Thermal energy demand/a Qout (c×d) 20.000 kWh/a 

Electricity demand (3-4 people) 4.000 kWh 

Location Germany 

 

Table 10.  CO2 Impact Primary Energy usage 

Type 
Efficiency 

unit 

Efficiency 

chain 2-5 

Total unit 

energy kW 

Total 

Primary 

energy kW/a 

CO2 equiv. 

kgCO2/kW 
CO2 kg/a 

Reference System 

gas 0,98 80 % 20.400 25.500 0,24 6.120 

electricity  35 % 4.000 11.428 0,56 6.400 

Total CO2 emission /a 12.520 

Fuel Cell Heating System with fossil gas 

FCH with fossil 

gas 

1 kw el. 0.8 kw 

thermal 

0,70 80 % 28.570 35.700 0,24 8.568 

45% el. 100 % 4.000 

 

35% th.  

3.200 

Rest gas 

19.022 

Total CO2 emission /a 8.568 

Fuel Cell Heating System with H2 produced from fossil gas 

FCH with fossil 

H2 

1 kw el. 0.8 kw 

thermal  

0,9 50 % 22.222 44.000 0,24 10.580 

45% el.  4.000 

 

35% th.  

3.200 

Rest gas 

19.022 
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Total CO2 emission /a 10.580 

Fuel Cell Heating System with H2 produced from renewable source PV 

FCH with PV H2 

1 kw el. 0.8 kw 

thermal  

0,90 10 % 22.222 222.222 0,01 2.222 

45% el.  4.000 

 

35% th.  

3.200 

Rest gas 

19.022 

Total CO2 emission /a 2.222 

 

The result of the analysis which are presented in table 10 shows, that conventional condensing 

gas boiler and electricity from the grid has the worst environmental impact. The reason is the bad 

efficiency of the production of electricity. The generated electricity with the Fuel Cell heating 

system should be compared with the standard electrical generation CO2 equivalent factor and 

subtracted from the energy amount on Gas.   In the Micro CHP´s the efficiency chain is far better 

for producing electricity. Ideal situation would be a H2 driven FCH System where H2 is produced 

out of a renewable energy source like PV, Wind or Hydro. 

Conclusion 

The research shows that hydrogen as a secondary energy fuel has a huge impact, under which 

conditions hydrogen will be produced and processed. 

Hydrogen as a secondary energy carrier can be an ideal energy source and a substitution for 

conventional fossil energy sources.  

It will reduce the environmental impact and will decarbonize the present energy structure. 

Another important point is the storability of hydrogen gas and using this in decentralized highly 

sophisticated energy systems like in the mobility or stationary product area. Through this energy 

generating the cost will be less and less transmission losses will occur. 

The research shows that hydrogen must be produced out of a renewable primary energy source. 

Fuel cells will be a key technology in the transformation of hydrogen to other forms of energy. In 

compare to existing conversion processes (Carnot Cycle) fuel cells are far more efficient. 

Energy conversion should be designed in decentralized intelligent units. The energy 

transformation should take place directly at the consumer where the energy is needed. The 

efficiency of the energy “value chain” plays an important role (renewable energy availability 

example photovoltaic systems). 

In the mobility sector (Cars) the energy source for charging up batteries or producing hydrogen 

must come from a renewable energy source. Fossil driven sources would make the 
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environmental impact even worse. If you count the number of cars which are available, the 

environmental impact in a long term is huge. 

For stationary system like in our example a Fuel Cell heating System, it would improve also with 

a fossil energy source the environmental impact. Ideally the fuel should be produced as well out 

of a renewable energy source.  

Outlook 

Hydrogen as a green energy source could have a potential for saving greenhouse gases and have 

more independency from conventional fossil fuel. Hydrogen as a green energy source can change 

the energy economy in the future.  

Future studies could more accurately analyse the levelized cost of energy (LCOE) with the help 

of renewable energy sources, the investment cost, the total operating cost (TOC) of the 

appliances, and efficiency of hydrogen-based systems. 
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