
 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 1

0/1 KNAPSACK PROBLEM: GREEDY VS. DYNAMIC-PROGRAMMING

Namer Ali Al Etawi 1, Fatima Thaher Aburomman 2

1 AL-Balqa Applied University, Princes Rahma College,

Al-Salt-Jordan

2 AL-Balqa Applied University, Princes Rahma College,

Al-Salt-Jordan

ABSTRACT

Knapsack Problem (KP) is one of the most profound problems in computer science. Its

applications are very wide in many other disciplines liken business, project management,

decision-making, etc. In this paper we are trying to compare between two approaches for solving

the KP, these are the Greedy approach and the Dynamic Programming approach. Each approach

is explained by an algorithm. Then results are obtained by implementing the algorithm using

Java. The results show that DP outperforms Greedy in terms of the optimized solution, while

greedy is better than DP with respect to runtime and space requirements.

Keywords: Knapsack Problem, Greedy Algorithm, Dynamic-Programming Algorithm.

1. INTRODUCTION

The Knapsack Problem (KP) is an example of a combinatorial optimization problem, which

seeks fora best solution from among many other solutions [1]. KP can be formalized in the

following manner [2]:

 Assume we have a knapsack with a capacity .

 Assume we have items to be filled in the knapsack in a way that maximizes the profit

while still bounded to the capacity of the knapsack.

 Each item has a weight and a profit .

 Let the selection of an item expressed by , such that and

 The objective is to:

The sense of the knapsack problem is that we have a set of decisions, aka solutions, each

decision has a certain value (weight) which can be looked at as the feasibility of that solution, the

aim is to select all set of feasible solutions. In other words, a decision-making process must be

initiated to compare between the alternatives [8].

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 2

We can think of the 0/1 Knapsack problem as an investment-decision making problem. An

investor who has an amount of money , and has investments; for each investment there is a

cost and some expected profit that will return from investing in an investment. The investor

will strive to invest in the investments that will maximize his profit.

In this paper, we are trying to compare between two well-known algorithms that are used to

solve the knapsack problem, these are the Greedy and the Dynamic-Programming algorithms.

We implement the algorithms in Java and compare the results of both algorithms together.

The remainder of this paper is organized as follows: in section 2, we present some work related

to the Knapsack problem. The methodology is illustrated in section 3. The Greedy and Dynamic

Programming approaches are discussed in sections 4 and 5 respectively. Results are discussed in

section 6. Finally, we conclude our research and highlight areas of future work.

2. RELATED WORK

KP is a hot research area. It’s classified as an NP-Problem [1]. A lot of work done to solve the

problem and to make comparisons between different approaches that tried to solve this approach.

Greedy method, dynamic programming, branch and bound, and backtracking are all methods

used to address the problem.

Maya Hristakeva and Dipti Shrestha [3] started a similar work in 2005 to compare not only

between these two types of algorithms but also with other algorithms including genetic

algorithm, backtracking, and others.

In this paper, we try to overcome the limit reached by [3] which is 1000 items; we start with 100

items and increase the number until we reach 1 million items.

3. Methodology:
We first give a formal definition to the knapsack problem. Then, we give a brief on both the

greedy and dynamic programming approaches. We show the algorithm used in each approach to

solve the KP. Runtime and space complexity are shown for each algorithm. We then implement

the algorithms in Java, obtain the results and compare between then and draw the conclusions.

4. The Greedy Algorithm

Greedy algorithm can be classified as blind. In its simplest way, it looks always for the future

and doesn’t look back to the past. All what greedy is trying to achieve is to try to collect the best

benefit from the solutions in hand, regardless of whether some other solutions can be more

beneficial at another moment of time in the future.

The algorithm shown in Figure 1 describes the solution of the KP using the greedy approach [3].

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 3

Figure 1: Pseudocode for knapsack 0/1 using a greedy algorithm

Table 1 shows the time complexity computation for the greedy method by dividing the algorithm

show in Fig. 1 to 3 components: (1) Ration Computation, (2) Sorting, and (3) Decision Making.

Table1: Time complexity calculation of the 0/1 greedy algorithm

Component Discussion Effort

Ratio Computation Takes only one loop of n (the

number of items)

Sorting One of the efficient well-known

sorting algorithms. e.g. Merge

Sort.

Decision Making The greedy algorithm for fitting

the items into the knapsack.

Contains only one loop of n

items.

As shown in Table 1, the time complexity of the algorithm shown in Fig. 1 is . This

means the algorithm is an efficient in terms of runtime complexity.

Space complexity is measured according to (1) and the analysis is shown in Table 2:

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 4

Table 2: Space complexity calculation of the 0/1 greedy algorithm

Component Discussion Effort

Inputs Two arrays, weights and

values, each of size n.

Outputs An array of knapsack

contents. As a worst-case

scenario, all items will be

selected.

Data Structures 1. One array to calculate

ratios.

2. Space complexity of

the merge sort.

5. Dynamic-Programming Algorithm Dynamic programming (DP) is different than greedy in

the way in which the optimized solution is selected [7]. As mentioned earlier, greedy always

seeks the maximum available profit without looking for the future or the past. DP generates all

feasible solutions from the solutions in hand, then iterates again through all of them to select the

best solution.

The pseudo code of DP is divided into two parts; the first part is the evaluation of alternatives

which is shown in Figure 2 [3].

Figure 2: Part 1 of DP, alternative evaluation

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 5

Starting from the maximum value reached from the algorithm shown in Fig. 2, a decision-

making phase starts to select the optimized solution as shown in Figure 3 [3].

Figure 3: Decision-Making phase

The runtime complexity of the first part of the algorithm can be calculated using equation (2):

Whereas C1 is constant. Thus, the complexity of the algorithm shown in Fig. 2 is .

Time complexity of the second part of the algorithm, Fig. 3, is calculated in the same manner;

only one loop of the number of items (n), thus the time complexity of it is .

Thus, the runtime complexity of DP is , which is , and this complexity is less

efficient than the of the greedy approach.

Table 3 represents the analysis of the space complexity of DP in the same manner used to

analyze the space complexity of the greedy algorithm.

Table 3: Space complexity calculation of the 0/1 DP algorithm

Component Discussion Effort

Inputs Two arrays,

weights and

values, each of

size n.

Outputs An array of

knapsack

contents. As a

worst-case

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 6

scenario, all

items will be

selected.

Data Structures A matrix of n x C

items.

Compared to the greedy algorithm, DP costs more memory . This means, DP requires more

memory space to perform.

6. Results

To perform the required testing and comparisons between the two algorithms, an implementation

of the two algorithms was done in Java. All results are test on an Intel Core(TM) i3 M-380 CPU

with 2.53 GHz and 3 MB cache with 2 cores [4]. Memory size of the computer in use is 4 GB of

RAM. The PC runs windows 7 Enterprise edition 64-bit.

6.1 The Application

The application is developed using Java JDK 8.0; the tool used to design the application is Net

Beans IDE 8.0.2. It's a Graphical User Interface (GUI) application that uses the java x. swing

package.

Item weights are generated randomly using JavaRandom.next() method which has

complexity [5]. Thus, the total complexity of the item generation shown in Fig. 5 is since it

uses only one loop that iterates times, such that is the number of elements (items).

Figure 4: Item generation and weight randomization

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 7

6.2 Greedy Results

Greedy algorithm is implemented based on the same algorithm shown in Fig. 1. Here, the

Collections.sort() method of Java is used to sort the items based on the ratios. According to Java

documentation [6] it takes runtime complexity.

Knapsack capacity is set to 30, maximum weight and profit are both set to 1000, and items are

generated as show in table 4.

Table 4: Items generated and results of greedy method

Items

Items

Selected

Knapsack

Value

Used

Capacity

Available

Capacity

Elapsed Time

(nSec)

100 3 1577 27 3 0.000306044

1000 6 4211 28 2 0.000573912

10000 18 13060 30 0 0.003385042

100000 30 25914 30 0 0.031406762

100000

0 30 29646 30 0 0.467525163

6.3 DP Results

Algorithm shown in Figure 2 and Figure 3 is implemented using Java based on table 5 using the

same knapsack capacity of 30 with a maximum weight and profit of 1000.

Table 5: Items generated and results of DP method

Items

Items

Selected

Knapsack

Value

Used

Capacity

Available

Capacity

Elapsed

Time

(nSec)

100 2 377 25 5 0.00017

1000 5 6542 27 3 0.00026

10000 16 91193 29 1 0.009256

100000 29 367864 29 1 0.093495

1000000 29 402900 29 1 1.448606

6.4 Comparison

6.4.1 Items Selected

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 8

As a result of comparison between the two tables 4 and 5, we can see that the greedy method

selects more items than the dynamic programming.

An explanation of that could be clear from the algorithm itself; the greedy method, tries to find

the items with higher ratios, thus it’ll generate higher number of items selected. While the DP is

not too much interested of the number of items compared to their overall profit after a deep

analysis level.

Figure 6 shows a comparison between items selected from both methods.

Figure 6: Comparison between Greedy and DP based on items selected

The difference between the two methods is not significant and could be neglected as shown in

tables 4 and 5 and Fig. 6. So, it can’t be used as a factor to decide which method is better than

the other one.

6.4.2 Knapsack Value

Except for a large amount of inputs, the DP method records higher knapsack value than greedy.

This is show in Figure 7.

Fig. 7: Comparison between Greedy and DP based on the knapsack value

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 9

As shown in Fig. 7, DP method outperforms greedy in terms of the knapsack value; the

difference between both of them is significantly high.

6.4.3 Runtime

Figure 8 summarizes the comparison between the two methods in terms of runtime.

Fig. 8: Comparison between Greedy and DP based on runtime

It’s clear from Fig. 8, that DP is much slower than Greedy. Analytically, DP takes runtime

complexity, while Greedy takes time which is smaller than that of DP especially on

higher inputs.

6.4.4 Summary:

Table 6 summarizes the differences between the two algorithms:

Table 6: Overall comparison

 Greedy DP

Runtime Higher on

small

inputs, and

better on

larger

inputs

Lower on

small inputs

and worse

on larger

inputs

Space
Items

Selected

More items

are selected

Less items

are selected

Optimality

of

Solution

Less Higher

 International Journal of Advanced Engineering and Management Research

Vol. 5, No. 02; 2020

ISSN: 2456-3676

www.ijaemr.com Page 10

7. Conclusion and Future Work

In this paper, two methods are explained, Greedy and Dynamic-Programming Methods. For that,

a Java application has been developed to generate the items and perform the two algorithms and

get the results.

According to the results, each method has its advantages and disadvantages; Greedy is has lower

runtime and memory requirements but it gives less knapsack value. This indicates that the DP

method is near to optimal than the Greedy method.

On the other hand, DP takes more runtime and its memory requirements are higher. Greedy is

less expensive than DP either in time or space requirements, whereas DP’s cost get higher and

higher depending on the size of knapsack and the number of items.

As a future work, further solutions can be compared together and compared to the results we

obtained in this paper.

References

Maya Hristakeva and Dipti Shrestha. Solving the 0-1 Knapsack Problem with Genetic

Algorithms. Midwest Instruction and Computing Symposium April 16 – 17,

University of Minnesota at Morris. 2004.

A. Al-Shaikh, H. Khattab, A. Sharieh and A. Sleit. Resource Utilization in Cloud Computing as

an Optimization Problem. International Journal of Advanced Computer Science and

Applications (IJACSA). vol. 7, no. 6, pp. 336-342, 2016.

Maya Hristakeva, Dipti Shrestha. Different Approaches to Solve the 0/1 Knapsack Problem.

Midwest Instruction and Computing Symposium. 2005.

Your Source for Intel® Product Information, Intel Corp.,

http://ark.intel.com/products/50178/Intel-Core-i3-380M-Processor-3M-Cache-2_53-

GHz cited on 01/12/2014.

Class Random, Java Doc,

https://docs.oracle.com/javase/6/docs/api/java/util/Random.html#next%28int%29,

cited on 01/12/2014.

Class Collections, Java Doc, http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html,

cited on 01/12/2014.

Ágnes Erdősné Németh, László ZSAKÓ. The Place of the Dynamic Programming Concept in

the Progression of Contestants’ Thinking. Olympiads in Informatics. 2016. Vol. 10,

61–72

Wesley Kerr. Investigation into Knapsack. ,2014

http://ark.intel.com/products/50178/Intel-Core-i3-380M-Processor-3M-Cache-2_53-GHz%20cited%20on%2001/12/2014
http://ark.intel.com/products/50178/Intel-Core-i3-380M-Processor-3M-Cache-2_53-GHz%20cited%20on%2001/12/2014

	Namer Ali Al Etawi 1, Fatima Thaher Aburomman 2
	1 AL-Balqa Applied University, Princes Rahma College,
	Al-Salt-Jordan
	2 AL-Balqa Applied University, Princes Rahma College,
	Al-Salt-Jordan (1)
	ABSTRACT
	Knapsack Problem (KP) is one of the most profound problems in computer science. Its applications are very wide in many other disciplines liken business, project management, decision-making, etc. In this paper we are trying to compare between two appro...
	Keywords: Knapsack Problem, Greedy Algorithm, Dynamic-Programming Algorithm.
	1. Introduction
	2. Related Work
	Greedy algorithm can be classified as blind. In its simplest way, it looks always for the future and doesn’t look back to the past. All what greedy is trying to achieve is to try to collect the best benefit from the solutions in hand, regardless of wh...
	The algorithm shown in Figure 1 describes the solution of the KP using the greedy approach [3].
	Table 1 shows the time complexity computation for the greedy method by dividing the algorithm show in Fig. 1 to 3 components: (1) Ration Computation, (2) Sorting, and (3) Decision Making.
	Maya Hristakeva and Dipti Shrestha. Solving the 0-1 Knapsack Problem with Genetic Algorithms. Midwest Instruction and Computing Symposium April 16 – 17, University of Minnesota at Morris. 2004.
	A. Al-Shaikh, H. Khattab, A. Sharieh and A. Sleit. Resource Utilization in Cloud Computing as an Optimization Problem. International Journal of Advanced Computer Science and Applications (IJACSA). vol. 7, no. 6, pp. 336-342, 2016.
	Maya Hristakeva, Dipti Shrestha. Different Approaches to Solve the 0/1 Knapsack Problem. Midwest Instruction and Computing Symposium. 2005.
	Wesley Kerr. Investigation into Knapsack. ,2014

