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Abstract 

In paper are spend analysis of two classes of operations on geometric images of automata models 

of discrete dynamical systems. The operations of combining and regularization of geometrical 

images of automaton mappings are investigated. As a means of regularization of the partially 

defined automaton mappings are used both the classical interpolation methods of the numerical 

graphs and their new modifications. Various operations of combining of geometrical images are 

investigated. For the selected class of combining operations is made an analysis of the 

dependence of the number of states of the automaton, the geometric image of which is obtained 

as a result of the juxtaposition of geometric images of basic automatons, from the powers of the 

sets of states of basic automatons. The effectiveness of various methods of interpolation is 

investigated for regularization of partially defined geometric images of automatons. 

Key Words: discrete deterministic dynamical system, mathematical model, automaton, 

geometric image of automata mapping, interpolation, combination of geometric images of 

automatons. 

1 . Introduction.  

At exploitation of modern complex man-machine systems (air transport, space systems, nuclear, 

wind and hydroelectric power stations, railways and motor roads, large industrial enterprises for 

various purposes, gas and oil networks, oil pipelines, telecommunications networks, distributed 

computing systems), there may be emergencies (events) in the event of a negative development 

of which (in the absence of parrying a defect or in case of parrying non-rules the recognized 

defect, etc.) can lead to an accident or catastrophe, the consequences of which, in turn, can 

substantially block the economic and other effects from the use of such systems. In this regard, 

the problem of ensuring and maintaining the safety of functioning of modern complex man-

machine systems is very relevant and represents the subject of research of a huge number of 

teams of both domestic and foreign scientists and specialists. 
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The problem of ensuring and maintaining the security of the functioning of complex systems 

includes the tasks of control and diagnosing of systems. One of the main difficulties that do not 

allow the effective dissemination of all the variety of methods of technical diagnosis developed 

for low-dimensional systems is the problem of constructing mathematical models of systems 

(both complex technical systems and complex man-machine systems). 

The fundamental impossibility of constructing a complete, accurate and compact model of 

complex man-machine systems (as well as complex technical systems) is due to the enormous 

dimension of such systems, the complex structure, the large number of connections between 

components and subsystems, the presence of uncertainties in functioning, etc. In view of the 

above features of complex man-machine systems (CMMS) is being conducted research on the 

development of methods of constructing a model of the CMMS in a whole (taking into account 

the heterogeneity of processes in the CMMS, changes in the CMMS in time) on the basis of a 

limited set of fully or partially defined actual processes of the system operation, and also for 

constructing a mathematical model of the system in a whole, based on models of individual 

components of the system. 

The novelty of the paper is that it is proposed to  develop methods of regularization for partially 

set laws of functioning of the automatons, presented exactly in the geometrical images and 

exactly with use of interpolation methods. Such methods allow to take into account the 

specificity of automaton models of complex systems by using: the base points, which second 

coordinates are received by sections of geometrical images by the straight lines parallel to an 

axis of abscissas; the base points of interpolation allocated with the first elements of some tops of 

geometrical images (for this, autonomous subautomatons are used). 

 

2. Materials and Methods: Geometrical form of mathematical models of complex discrete 

dynamical systems. 

It is known, that the apparatus of continuous numerical mathematics effectively uses infinite sets. 

In this connection Tverdokhlebov V. A. was developed the new approach to construction of 

models of difficult systems and methods of the analysis of such models, which are stated in 

works [1, 2]. A developed principle is placing of discrete structures on continuous geometrical 

curves, as a rule, set analytically. For this purpose instead of next-state function and output 

function of automaton is considered a  automaton mapping, i.e. symbolical mathematical 

structures of a kind (input sequence, output sequence).  

These structures rely points, which after introduction of linear ordered on set of all input 

sequences and on set of all output sequences, form the symbolical graphic. Numberings of input 

and output sequences on the basis of the entered linear orders transform the symbolical graphic 

into the numerical curve. Possibility of placing of discrete automaton mapping on continuous 

(numerical) geometrical curves, that allows to work with laws of functioning of automatons with 

the methods, developed in the continuous mathematics for geometrical curves turns out. 

Geometrical image  γs  of laws of functioning (see works [1,2]) (next-state function 

δ: S×X→S and functions of outputs λ: S×X→Y) of initial finite determined automaton  

As = (S, X, Y, δ, λ, s) with sets of states  S , input signals X and output signals Y it is defined on 

the basis of introduction of a linear order ω  in automata mapping  
*

)),(,(
Xp

s psp


  , where 

)),,((),( xpsps   , at p=p′x. Automaton mapping  ρs (set of pairs) is ordered by linear order  ω, 

defined on the basis of an order ω1 on X* and set by following rules: 
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Rule 1. On set Х some linear order ω 1 (which we will designate 1 ) is entered 

Rule 2. An order ω 1 on Х we will extend to a linear order on set Х *, believing, that 

- For any words *
21, Xpp  with unequal length ( |p1 | ≠ | p2 |) |p1 | <|p2 | → 211 pp  ; 

- For any words *
21, Xpp   for which |p1 | = |p2 | and    p1 ≠ p2, their relation in the order of 

ω1 repeats the relation of the incoincident letters of words, nearest at the left   in  p1 and p2. The 

order ω 2 on set of words Y* is similarly defined. 

After introduction on set X* of a linear order ω1, we receive linearly ordered set ),( 1  ss , 

where 1  - an order on s  , induced rather  ω1  on   X*. 

Having a linear order ω2 , defined on set Y and having placed set of points  ρs  in system of 

coordinates  D1  with an axis of abscisses   (X *, ω1 ) and an axis of ordinates (Y, ω2)  , we receive 

a geometrical image γs of  laws of functioning of initial finite determined automaton  

As = (S, X, Y, δ, λ, s). Linear orderes ω1  and ω2 allow to replace elements of sets  X* and Y  by 

their numbers  r1(p) and r2 (p) on these orders. 

 

3. Synthesis of automatons by geometric curves. Proposed and developed by 

Tverdokhlebov V.A. the apparatus of geometric images of automatons allows  to consider 

geometric curves with automaton interpretation. The use of geometric images introduces 

methods of automata theory into the analysis of geometric curves. 

For an initial finite deterministic automaton  0s, ,  where   ,,Y,X,S   and all five 

components of the automaton are required to determine. For the set of states of the automaton we 

use the notation:    *ppsS


 , where   x,ss ppx  , Xx , *Xp ,  ss0 . This allows to introduce 

and use the standard definition of the next-state function δ with the possible subsequent 

minimization of the automaton with respect to the number of states and the corresponding 

correction of the function δ.  

The method of synthesis the laws of the functioning of a discrete deterministic automaton by 

a given geometric figure proposed and developed by V.A. Tverdokhlebov in [1] establishes a 

one-to-one correspondence between the functions  and   and a geometric figure based on the 

selected and fixed traversal of the line and points on the curve. In fact, in the method the curve 

line is represented by a sequence of points, the choice of which is not unique without additional 

conditions. In this paper, we research  the properties of the laws of the functioning of discrete 

deterministic dynamical systems represented in the form of geometric curves. 

Based on the method proposed by V.A. Tverdokhlebov in [1], are constructed for each of the 

analyzed curves 12 automatons (for different values of the power of the input alphabet of the 

automaton, | X | = 2, 5, 10, 25). The set of geometric curves extracted from the bank [5] consists 

of 50 geometric curves, so the total number of automatons is 600. An important way is to extend 

the function of the transitions δ of the automaton. Cyclic regularization, regularization to the 

initial state, generation of the state in a pseudo-random manner (from a set of possible states) is 

possible. In a case, when  









|||| X

k

X

k
 , where |X| - the power of the input alphabet of the 

automaton, and  k - is the number of points on the curve (along which the laws of the functioning 

of the automaton are constructed), an regularization is required for the output function λ. 
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In this paper, the definition of the next-state function is carried out by all these methods, and 

the value of the input alphabet power and the number of points are chosen in such a way that 











|||| X

k

X

k
, therefore, the definition of the function λ is not required. 

As an example, in table 1 we give the definition of an automaton (for | X | = 10) constructed 

by the Fibonacci spiral (in the curve approximation by 30 points) when the next-state function is 

cycled. 

The selection of classes of equivalent states showed that for all 600 automatons constructed 

by 50 geometric curves (when 30 points are chosen on curves), the number of equivalence 

classes coincides with the number of states of the automaton, i.e. automatons are already 

minimal in the number of states. 

This property is present in all 600 automatons constructed with all the methods of 

regularization of next-state function of the automaton: when the next-state function is cycled, 

when it is extended to the initial state, when it is redefined using a random number generator (the 

state is randomly selected from a variety of possible states). 

Table 1 - Next-state and output functions of automaton constructed by Fibonacci spiral 

δ s0 s1 s2   λ s0 s1 s2 

x1 s1 s0 s1   x1 y5 y1 y12 

x2 s2 s1 s2   x2 y4 y0 y13 

x3 s0 s2 s0   x3 y3 y1 y14 

x4 s1 s0 s1   x4 y5 y2 y15 

x5 s2 s1 s2   x5 y6 y3 y16 

x6 s0 s2 s0   x6 y7 y7 y17 

x7 s1 s0 s1   x7 y6 y8 y18 

x8 s2 s1 s2   x8 y5 y9 y18 

x9 s0 s2 s0   x9 y3 y10 y18 

x10 s1 s0 s1   x10 y2 y11 y17 

 

4. Analysis of the operations of combining geometric images of automatons. In this part 

of the paper are investigated  the operations of combining of geometric images of automatons. 

Are realized the construction and analysis of automatons, the geometric images of which are 

obtained by combining from the basic set of curves. 

We consider 50 2D curves from the bank [5] and two operations of combining of geometric 

curves (addition and subtraction). The result of the addition of the curves  y1=f1(x)  and y2=f2(x)  
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is the curve y=f1(x) + f2(x), subtraction - y=f1(x) - f2(x). Investigated the dependence of the 

number of states in minimal automata constructed from the base curves and from the curves 

obtained as a result of combining of the basic ones with the number of input signals of the 

automaton, from the method of regularization of next-state function, and the type of the 

operation of combining the curves. As a result of overlapping of 50 basic geometric curves, 2500 

curves are obtained with the addition operation and 2500 curves using the subtraction operation. 

The synthesis of the laws of the functioning of automatons by curves is carried out with three 

methods of regularization of next-state function of the automaton (cyclic, to the initial state, 

random generation of the state), and the following number of input signals of the automaton: 

| X | = 2, 5, 10, 25, 50. As an example, on fig. 1 are shown 2 curves y1=f1(x)  and  y2=f2(x)   from 

the basic set of curves, and the curve y = f1(x)+ f2(x),  obtained as a result of addition. The 

analytical specification of these curves has the following form: y1=
1+|x|

15+|x|
2

5

,  y2 = ex . The 

automatons constructed on these curves for the selection of points on the curves 20, cyclic 

regularization of next-state function of the automatons and | X | = 5 are given in tables 2-4. In the 

above example, the number of states after minimization for the automata A1 and A2 constructed 

from the curves y1=
1+|x|

15+|x|
2

5

 и  y2 = ex, and also from the automaton B constructed from the 

curve y =
1+|x|

15+|x|
2

5

+ ex, does not change, i.e. automata are already minimal in number of states. 

 

Table 2 - Next-state and output functions of automaton A1 (with |X| = 5 ) constructed by 

geometrical curve  y1  

δ s0 s1 s2 s3  λ s0 s1 s2 s3 

x1 s1 s2 s3 s0  x1 y6 y0 y4 y1 

x2 s2 s3 s0 s1  x2 y5 y1 y3 y2 

x3 s3 s0 s1 s2  x3 y4 y2 y2 y4 

x4 s0 s1 s2 s3  x4 y2 y3 y1 y5 

x5 s1 s2 s3 s0  x5 y1 y4 y0 y6 

 

It is noted that when used regularization of the next-state function of automaton to the initial 

state and the value | X | = 2, the number of states for the automaton B decreases after 

minimization, whereas for the automata A1 and A2, the number of states does not decrease. In the 

case when the power of the input alphabet of the automaton is equal to 10 the number of classes 

of equivalent states for the automata A1 ,  A2  and  B for all used regularization methods to 

determine the next-state function (cyclic, to the initial state and randomization) coincides with 

the number of states (i.e., automatons are minimal). 
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Table 3 - Next-state and output functions of automaton A1 (with |X| = 5 ) constructed by 

geometrical curve  y2=ex  

δ s0 s1 s2 s3  λ s0 s1 s2 s3 

x1 s1 s2 s3 s0  x1 y0 y5 y10 y15 

x2 s2 s3 s0 s1  x2 y1 y6 y11 y16 

x3 s3 s0 s1 s2  x3 y2 y7 y12 y17 

x4 s0 s1 s2 s3  x4 y3 y8 y13 y18 

x5 s1 s2 s3 s0  x5 y4 y9 y14 y19 

 

As a result of the construction and analysis of 75,000 automatons with 5000 curves obtained as a 

result of combining of basic curves, it was noted that the use of both the addition operation and 

the subtraction operation for the values | X | = 5, 10, 25, 50 and the definition functions of 

automata transitions randomly (using a pseudo-random variable generator) does not reduce the 

number of states in the automatons. 

 

Table 4 - Next-state and output functions of automaton B (with |X| = 5 ) constructed by 

geometrical curve   y =
1+|x|

15+|x|
2

5

+ ex 

δ s0 s1 s2 s3  λ s0 s1 s2 s3 

x1 s1 s2 s3 s0  x1 y7 y1 y4 y3 

x2 s2 s3 s0 s1  x2 y6 y0 y5 y4 

x3 s3 s0 s1 s2  x3 y5 y1 y4 y5 

x4 s0 s1 s2 s3  x4 y4 y2 y3 y6 

x5 s1 s2 s3 s0  x5 y2 y3 y2 y7 

 

Using the additional definition (regularization) of next-state function to the initial state and the 

values | X | = 2, 5, it is possible to reduce the number of states after minimization, both for 

automatons constructed from basic curves and for automatons constructed from the curves 

obtained as a result of combining and with the addition operation and using the subtraction 

operation. An analysis of automatons constructed using all these methods of regularization of 

next-state function and at values | X | = 10, 25, 50 showed that after minimization the number of 

states does not decrease. 
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Also, the analysis of automatons constructed from curves obtained as a result of combining 

the basic curves by means of the operation of exponentiation, i.e., the result of combining 

y1=f1(x)  and y2=f2(x)   from the base set of curves is assumed to be  curve y=f1(x)f2(x). 

 

 

As a result of this combination of geometric images, more than 1500 curves have been 

constructed, according to which the laws of the functioning of more than 18,000 automatons are 

synthesized, with different ways of regularization) of next-state function of the automaton and 

various values of the power of the input alphabet. It is noted that for certain combinations of the 

curves y1=f1(x)   and y2 = f2 (x) and y2=f2(x)  and the values | X | = 2 and | X | = 5, the number of 

states can be reduced after minimization of the automaton constructed from the curve obtained as 

a result of combining the curves y1=f1(x)  and y2=f2(x). 

5. Development of methods for increasing the completeness and accuracy of automaton 

models of systems using the interpolation of geometric images of automatons. 

 In the fundamental papers containing the development of the theory of automatons, the 

problem of regularization of partially set automatons on the basis of a unified approach is not 

considered. There are problems in the solution of which the methods used assume completely 

established laws of automata functioning, and in the initial data these laws are presented only 

partially. 

Fundamental mathematical results on the regularization of partially specified graphics are 

represented by classical interpolation methods of Newton, Lagrange, Gauss, Bessel, Stirling, 

spline interpolation methods, least-squares method, nearest-neighbor method, etc. The 

inapplicability of these methods for partially specified automatons is related to the symbolic 

y=
1+|x|

15+|x|
2

5

+ ex. 
y1=

1+|x|

15+|x|
2

5

, 

y2 = ex  ,   

 

Figure 1 -  Graphics of functions  
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form of setting automatons by tables, matrices, graphs, systems of logical equations, and so on. 

The definition of the laws of automata functioning by numerical structures on the basis of the 

representation of automatons mappings by numerical graphs [1, 2] allows to use classical 

interpolation methods in the theory of automatons. In this paper we consider the interpolation of 

the laws of functioning of automatons on the basis of the application of developed methods  to 

classes of automatons and their subclasses formed by combinations of Post properties for 

combinational parts of automatons. 

In this section are present the results of an analysis of the effectiveness of the application of 

the classical interpolation methods of Newton, Lagrange, Gauss, and others for regularization the 

partially defined laws for of functioning of automatons in a subclass of linear (8,2,2)-automatons. 

The class of (8,2,2) - automatons consists of 18446744073709551616 automatons. 

To perform the analysis of the efficiency of the regularization for the whole class of (8,2,2) - 

automatons, even when considering the initial lengths of geometric images of length 2046 

(which corresponds to the functioning of the automaton in words up to length 10 inclusive) and 

the recovery rate of 1,000,000 partially specified geometric images per second, more than 

580,000 years will be required. In addition, the definition of an effective interpolation method for 

regularization the laws governing the operation of automatons is not possible without taking into 

account the specific of laws of the operation of automatons. In view of this, the problem of 

analyzing the effectiveness of the application of classical interpolation methods in order to 

regularization the laws of the operation of automatons in particular subclasses is topical.  

The selection for the analysis of subclasses of automata is carried out on the basis of a new 

classification of finite determinate automata, proposed in [1]. It is assumed that the automaton is 

defined as follows: A=({0,1}3,{0,1}, {0,1}, <1, 2 , 3>, ), where functions  1, 2, 3 and   - 

Boolean functions of a kind i:{0,1}3{0,1}{0,1}, :{0,1}3{0,1}{0,1}. Using the 

classification of automata proposed in [1] based on the use of the property of five Post classes 

(monotonic, affine, self-dual, truth-preserving, falsity-preserving, see [1]) for characteristics of 

the next-state functions <1, 2, 3> and the outputs function λ, as well as combinations of these 

properties , from the (8,2,2) - automatons class, 15 non-empty subclasses of automata were 

singled out. 

To denote the class of automatons whose next-state and output functions belong to the class 

of functions of the algebra of logic edcbauvij KKKKK=K ∩∩∩∩ , where 









0,1

0,0

a

a
i , 










1,1

1,0

b

b
j  , 










Lc

Lc

,1

,0
 , 










Sd

Sd
u

,1

,0  , 









Me

Me
v

,1

,0  , we will use the letter H with five lower 

indices. For example: 01100H  - a class of automatons whose next-state and output functions 

belong to the class of functions of the algebra of logic 
MSL1001100 KKKKK=K ∩∩∩∩ . 

Information on the power of each considered of the 15 subclasses of the class of functions of 

the algebra of logic of 4 variables is given in table 5, and in table 6 - information about 

subclasses of the (8,2,2) - automatons class and properties of the next-state and output functions. 
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Table 5 - non-empty subclasses of class of Boolean functions from 4 variables 

Automaton subclass 

number 
Property of subclass  

Number of functions in 

subclass 

1 K00000 16256 

2 K00010 120 

3 K00110 8 

4 K01000 16376 

5 K01100 7 

6 K01101 1 

7 K10000 16376 

8 K10100 7 

9 K10101 1 

10 K11000 16102 

11 K11001 154 

12 K11010 112 

13 K11011 8 

14 K11110 4 

15 K11111 4 

 

In this paper we analyze the effectiveness of using of classical interpolation methods to 

partially defined geometric images of automata from subclasses H00110 ,  H01100 , H10100, H11011 , 

H11110  and  H11111  of (8,2,2) -automatons class. A subclass of linear (8.2,2)-automatons 

(8388608 initial automata) is also considered, class of automatons defined as follows: 

A=({0,1}3,{0,1}, {0,1}, <1, 2 , 3>, ), where the functions 1, 2, 3 and    are linear Boolean 

functions of 4 variables of a kind i:{0,1}3{0,1}{0,1}, :{0,1}3{0,1}{0,1}. 

The following theorem reflects the results of the analysis of the effectiveness of the 

application of the Newton and Lagrange interpolation methods to partially-given geometric 

images of autonomous subautomatons of the class of linear (8,2,2) -automatons. 

Theorem 1. Let  Gd  , where }254,126,62,30{d ∈  - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind  A=({s1,s2,…,s8},{x1,x2},{y1, y2}, 

δ, λ, }s ..., ,s ,s{ 8210 s ) from a class of linear (8,2,2)-automatons, and  )G(G 0
d

1
d  - set of geometrical 
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images of autonomous subautomatons with input signal "1" (signal "0" for 0
dG ), which are 

sections of geometrical images from  Gd  . Then :  

- at d = 30 for 5578433 automatons L
d

N
d n>n , for 607351 automatons L

d
N
d n<n , for 2202824 

automatons L
d

N
d n=n ; 

- at d = 62 for 4494945 automatons L
d

N
d n>n , for 744490 automatons L

d
N
d n<n , for 3149173 

automatons L
d

N
d n=n ; 

- at d = 126 for 1426944 automatons L
d

N
d n>n , for 1483776 automatons L

d
N
d n<n , for 

5477888 automatons L
d

N
d n=n ; 

- at d = 254 for 1492352 automatons L
d

N
d n>n , for 1402240  automatons L

d
N
d n<n , for 

5494016 automatons L
d

N
d n=n .  

Table 6 -15 nonempty subclasses of (8,2,2)-automatons class 

Automaton 

subclass 

number 

The class to which the 

next-state and output 

functions belong 

Number of 

automatons in 

subclass 

Number of initial 

automatons 

1 H00000 69832045332791296 558656362662330368 

2 H00010 207360000 1658880000 

3 H00110 4096 32768 

4 H01000 71916959595237376 575335676761899008 

5 H01100 2401 19208 

6 H01101 1 8 

7 H10000 71916959595237376 575335676761899008 

8 H10100 2401 19208 

9 H10101 1 8 

10 H11000 67223216569555216 537785732556441728 

11 H11001 562448656 4499589248 

12 H11010 157351936 1258815488 

13 H11011 4096 32768 

14 H11110 256 2048 

15 H11111 256 2048 
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Figure 2 shows a schematic partitioning of the class of linear (8,2,2)-automatons into 

subclasses d
3

d
2

d
1 M,M,M , }254,126,62,30{d ∈ , where  )M,M(M d

3
d
2

d
1  for concrete value   d  , 

respectively, subclasses of automatons for which the number of correctly restored points by 

Newton's method is strictly greater than the number (strictly less than a number, equal to the 

number) of correctly restored points by the Lagrange method.  

The following Theorems 2-9 reflect the results of the analysis of the effectiveness of 

Newton's and Lagrange's methods in subclasses  H00110 ,  H01100 , H01101 , H10100 , H10101 , H11011 , 

H11110  и H11111  of (8,2,2)-automatons class. 

Theorem 2. Let  Gd  , where }254,126,62,30{d ∈ , - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind    

A=({s1,s2,…,s8},{x1,x2},{y1, y2},δ, λ, }s ..., ,s ,s{s 8210 ∈ ) from subclass H00110 of (8,2,2)-automatons 

class and  )G(G 0
d

1
d

 - set of geometrical images of autonomous subautomatons with input signal 

"1" (signal "0" for 0
dG ), which are sections of geometrical images from  Gd  . Then:  

- at d = 30 for 23281 automatons L
d

N
d n>n , for 1320 automatons L

d
N
d n<n , for 8167 

automatons L
d

N
d n=n ; 

- at d = 62 for 17456 automatons L
d

N
d n>n , for 1524 automatons L

d
N
d n<n , for 13788 

automatons L

d

N

d nn  ; 

- at d = 126 for 3168 automatons L
d

N
d n>n , for 4672 automatons L

d
N
d n<n , for 24928 

automatons L
d

N
d n=n ; 

- at d = 254 for 4360 automatons L
d

N
d n>n , for 3240  automatons L

d
N
d n<n , for 25168 

automatons L
d

N
d n=n .  

Theorem 3. Let  Gd  , where }254,126,62,30{d ∈ , - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind    

A=({s1,s2,…,s8},{x1,x2},{y1, y2},δ, λ, }s ..., ,s ,s{s 8210 ∈ ) from subclass H01100 of (8,2,2)-automatons 

class and  )G(G 0
d

1
d  - set of geometrical images of autonomous subautomatons with input signal 

"1" (signal "0" for 0
dG ), which are sections of geometrical images from  Gd  . Then:  

- at d = 30 for 12870 automatons L
d

N
d n>n , for 1300 automatons L

d
N
d n<n , for 5038 

automatons L
d

N
d n=n ; 

- at d = 62 for 10214 automatons L
d

N
d n>n , for 2092 automatons L

d
N
d n<n , for 6902 

automatons L
d

N
d n=n ; 

- at d = 126 for 4420 automatons L
d

N
d n>n , for 2712 automatons L

d
N
d n<n , for 12076 

automatons L
d

N
d n=n ; 
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- at d = 254 for 4606 automatons L
d

N
d n>n , for 2610 automatons L

d
N
d n<n , for 11992 

automatons L
d

N
d n=n .  

 

Theorem 4. Let  Gd  , where }254,126,62,30{d ∈ , - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind    

A=({s1,s2,…,s8},{x1,x2},{y1, y2},δ, λ, }s ..., ,s ,s{s 8210 ∈ ) from subclass H01101 of (8,2,2)-automatons 

class and  )G(G 0
d

1
d  - set of geometrical images of autonomous subautomatons with input signal 

"1" (signal "0" for 0
dG ), which are sections of geometrical images from  Gd  . Then for any 

}254,126,62,30{d ∈  for all automatons from this subclass inequality L
d

N
d n>n is true. 

Theorem 5. Let  Gd  , where }254,126,62,30{d ∈ , - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind    

A=({s1,s2,…,s8},{x1,x2},{y1, y2},δ, λ, }s ..., ,s ,s{s 8210 ∈ ) from subclass H10100 of (8,2,2)-automatons 

class and  )G(G 0
d

1
d  - set of geometrical images of autonomous subautomatons with input signal 

"1" (signal "0" for 0
dG ), which are sections of geometrical images from  Gd  . Then: 

- at d = 30 for 11567 automatons L
d

N
d n>n , for 2380  automatons L

d
N
d n<n , for 5261 

automatons L
d

N
d n=n ; 

- at d = 62 for 9715 automatons L
d

N
d n>n , for 3184 automatons L

d
N
d n<n , for 6309 

automatons L
d

N
d n=n ; 

Figure 2 - schematic partitioning of the class of linear (8,2,2) automatons into subclasses 
d
3

d
2

d
1 M,M,M , }254,126,62,30{d∈ , on the basis of analysis of effectiveness of the application of 

the Newton and Lagrange interpolation methods in relation to partially defined geometric images 

of autonomous subautomatons 

(a): d=30. (b): d=62. 

(с): d=126. (d): d=254. 

- L
d

N
d n>n  

- L
d

N
d n<n  

- L
d

N
d n=n  
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- at d = 126 for 2916 automatons L
d

N
d n>n , for 4216 automatons L

d
N
d n<n , for 12076 

automatons L
d

N
d n=n ; 

- at d = 254 for 2682 automatons L
d

N
d n>n , for 4342 automatons L

d
N
d n<n , for 12184 

automatons L
d

N
d n=n .  

Theorem 6. Let  Gd  , where }254,126,62,30{d ∈ , - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind    

A=({s1,s2,…,s8},{x1,x2},{y1, y2},δ, λ, }s ..., ,s ,s{s 8210 ∈ ) from subclass H10101 of (8,2,2)-automatons 

class and  )G(G 0
d

1
d

 - set of geometrical images of autonomous subautomatons with input signal 

"1" (signal "0" for 0
dG ), which are sections of geometrical images from  Gd  . Then for all 

automatons from this subclass equality L
d

N
d n=n  is true.  

Theorem 7. Let  Gd  , where }254,126,62,30{d ∈ , - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind    

A=({s1,s2,…,s8},{x1,x2},{y1, y2},δ, λ, }s ..., ,s ,s{s 8210 ∈ ) from subclass H11011 of (8,2,2)-automatons 

class and  )G(G 0
d

1
d

 - set of geometrical images of autonomous subautomatons with input signal 

"1" (signal "0" for 0
dG ), which are sections of geometrical images from  Gd  . Then: 

- at d = 30 for 17538 automatons L
d

N
d n>n , for 15230 automatons L

d
N
d n=n ; 

- at d = 62 for 17530 automatons L
d

N
d n>n , for 88 automatons L

d
N
d n<n , for 15150 

automatons L
d

N
d n=n ; 

- at }254,126{d ∈  for 9262 automatons L
d

N
d n>n , for 23506 automatons L

d
N
d n=n .  

Theorem 8. Let  Gd  , where }254,126,62,30{d ∈ , - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind    

A=({s1,s2,…,s8},{x1,x2},{y1, y2},δ, λ, }s ..., ,s ,s{s 8210 ∈ ) from subclass H11110 of (8,2,2)-automatons 

class and  )G(G 0
d

1
d  - set of geometrical images of autonomous subautomatons with input signal 

"1" (signal "0" for 0
dG ), which are sections of geometrical images from  Gd  . Then: 

- at d = 30 for 1292 automatons L
d

N
d n>n , for 64  automatons L

d
N
d n<n , for 692 automatons 

L
d

N
d n=n ; 

- at d = 62 for 1058 automatons L
d

N
d n>n , for 94 automatons L

d
N
d n<n , for 896 automatons 

L
d

N
d n=n ; 

- at d = 126 for 202 automatons L
d

N
d n>n , for 162 automatons L

d
N
d n<n , for 1684 automatons 

L
d

N
d n=n ; 

- at d = 254 for 154 automatons L
d

N
d n>n , for 126 automatons L

d
N
d n<n , for 1768 automatons 

L
d

N
d n=n .  
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Theorem 9. Let  Gd  , where }254,126,62,30{d ∈ , - set of geometrical images of length   d of 

initial discrete deterministic automatons of a kind    

A=({s1,s2,…,s8},{x1,x2},{y1, y2},δ, λ, }s ..., ,s ,s{s 8210 ∈ ) from subclass H11110 of (8,2,2)-automatons 

class and  )G(G 0
d

1
d

 - set of geometrical images of autonomous subautomatons with input signal 

"1" (signal "0" for 0
dG ), which are sections of geometrical images from  Gd  . Then: 

- at d = 30 for 988 automatons L
d

N
d n>n , for  90  automatons L

d
N
d n<n , for 970 automatons 

L
d

N
d n=n ; 

- at d = 62 for 990 automatons L
d

N
d n>n , for 146 automatons L

d
N
d n<n , for 912 automatons 

L
d

N
d n=n ; 

- at d = 126 for 384 automatons L
d

N
d n>n , for 192 automatons L

d
N
d n<n , for 1472 automatons 

L
d

N
d n=n ; 

- at d = 254 for 444 automatons L
d

N
d n>n , for 132 automatons L

d
N
d n<n , for 1472 automatons 

L
d

N
d n=n .  

6. Conclusions.  For each of the 15 non-empty subclasses of the of (8,2,2)-automatons class 

from the 2 interpolation methods (Newton and Lagrange), the most effective method is 

determined. Thus, it is shown that the classical methods of interpolation are applicable to the 

regularization of the laws of functioning of automatons, it is possible to select an effective 

interpolation method and the model of control and diagnostic objects can be extended to classical 

interpolation methods. 
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