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Abstract

Structures produced as a result of poor weld molten metal fluidity do not possess enough
strength required to sustain its useful service life. This study was carried out with the aim of
optimizing and predicting the weld molten metal fluidity of weldment. Mild steel plate was cut
into dimension 60mmx40mmx10mm with a power hacksaw, grinded and cleaned before the
welding process. The experimental matrix was made of twenty (20) runs, generated by the design
expert 7.01 software adopting the central composite design. The responses were measured;
molten metal fluidity then modelled using the response surface methodology. The result obtained
in this research study shows that high molten metal fluidity produce weldment with better
structural integrity. The model produced numerical optimal solution of current 150 amps, voltage
of 20 volts and gas flow rate of 171/min will produce a welded structure having molten metal
fluidity of 143.33ms/kg at a desirability value of 94.6%.
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Introduction

Flow ability of weld molten metal from its liquid state to solid state during solidification is
somewhat similar to the metal casting solidification process Bakir et al. (2018) and Choo
(1992).Moran do et al.(2015) and Di Sabatino et al.(2008) defines fluidity of molten met alas the
distance a molten metal can cover before solidifying. Tailoring it into welding, we can define
fluidity of a weld as the distance a molten metal can travel into the gap between the mating
surfaces of parent metals during welding before solidification. This molten metal possess a
constant cross sectional area before it solidifies Kou and Wang (1986).Moran do et al.(2015)
noted that in filling thin sections with molten metal, flow ability is limited by heat transfer.
Molten metal fluidity can as well be used to describe the depth of penetration of molten metal,
Kou et al. (2011) and Chen and Kovacevic (2004). Molten metal fluidity consists of two basic
factors which includes the characteristic molten metal and the welding process parameters. Also
fluidity is inversely proportional to weld pool’s solidification range, Bakhtiyarov and Over
felt(1999) and Ambroziak (1999). Di Sabatino et al. (2008) wrote that fluidity limits the cast
ability of alloys and the final properties of castings, fluidity problems in welding results in poor
surface finish and wall thickness problems. Poor or insufficient fluidity affects the soundness of
cast products or welded joints and is detrimental to the final quality of the cast component or
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weldments. There is therefore, a strong industrial demand for understanding the physical and
process parameters governing the fluid flow of casting or weld alloys in order to improve their
fluidity. Davies (1992) said that it is difficult to experimentally determine the flow within a weld
pool because of the unfriendly local environment (arc thermal cycle), and the material
concerned. Liquid metal is not transparent so at best only surface flow can be observed. This
prevents a simple study of the crucial recirculating regions within the pool and the flow
conditions at the solid-liquid interface. Hence there is a great practical need for numerical flow
models in order to further improve our understanding of weld pool behavior. With the significant
advances in computer hardware and software over recent years such models once programmed as
computer simulations can now provide a previously unobtainable insight into weld pool flow
Chen and Kovacevic (2004).

The characteristics of molten metal which influences fluidity include the viscosity, surface
tension, and the solidification pattern of the alloy. As viscosity and its sensitivity to temperature
(viscosity index) increase, fluidity decreases. A high surface tension of the liquid metal reduces
fluidity. That is, oxide films developed on the surface of the molten metal known as slag have a
significant effect on fluidity. For instance, the slag on the surface of pure molten aluminum
triples its surface tension. . Thus the shorter the range (as in pure metals and eutectics), the
higher the fluidity becomes. Conversely, alloys with long solidification ranges (such as solid
solution alloys) have lower fluidity. Optimizing these parameters would further drastically
reduce or eliminate some of the problems associated with poor fluidity and also promotes scrap
reduction, or reduction of weld undercuts, which in turn leads to greater efficiency and increased
profitability.

Materials and Methods
Materials

100 pieces of mild steel coupons measuring 80 x 40 x10 was used for the experiments, the
experiment was performed 20 times using 5 specimens for each run. The key parameters
considered in this work are welding current, welding speed, gas flow rate, and welding voltage.
The range of the process parameters obtained from literature which is shown in the table 1. The
tungsten inert gas welding equipment was used to weld the plates after the edges have been
bevelled and machined. Figure 1 shows the TIG welding setup. The welding process uses a
shielding gas to protect the weld specimen from atmospheric interaction, 100% pure Argon gas
was used in this research study. Figure 2 shows the shielding gas cylinder and regulator. Figure 3
shows the weld sample

Figure 1: TIG equipment Figure 2: shielding gas cylinder and regulator
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Table 1: Process parameters and their levels

Factors Unit | Symbol | Low (-1) | High (+1)
Welding Current | Ampere I 130 170
Welding Voltage | Volts VvV 20 24

Gas Flow Rate | Lit/min | GFR 13 17

Figure 3 weld samples

Method of Data Collection

The central composite design matrix was developed using the design expert software, producing
20 experimental runs. The input parameters and output parameters make up the experimental
matrix and the responses recorded from the weld samples was used as the data. The data matrix
is determined by the number of input parameters which is expressed in the equation 2n +2n +k,
where k is number of center points,2n is the number of axial points and 2nis the number of
factorial points.

The matrix expressed in actual values which fall within the range stated, is presented in figure 4
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Figure 4 Central Composite Design Matrix (CCD) in actual values
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Testing the adequacy of the models developed

Table 2 shows the analysis of variance component, the analysis of variance (ANOVA) was used
to test the adequacy of the models. The statistical significance of the models developed and each
term in the regression equation were examined using the sequential F-test, lack-of-fit test and
other adequacy measures (i.e. R2, Adj- R~, Pred. R2 and Adeqg. Precision ratio) using the same
software to obtain the best fit. The Prob.>F (sometimes called p-value) of the model and of each
term in the model can be computed by means of ANOVA.

Table 2: Analysis of Variance Components

Variation Degree of Sum of Squares Mean Square Fisher Ratio
Source Freedom SS MS F-value
Df
Error of n-2 c di A SSE
SSE:ZZ(VU _yij)2 MSE :—2
residuals == n-
Regression 1 c A — SSR MSR
SSR = -—Y)? MSR =— F=—n
;;(y” y) . IS
Lack of fit C-2 c i _ oA SSLF « MSLF
SSLF, = =Y | MSLF=—— | F =———
. iZ_l',jZ_;,(y.J Vi) 5 VISPE
Total n-1 - -

SSTD = ii(yij _9”‘)2

i=1 j-1

RESULTS AND DISCUSSION

The design matrix showing the real value of three input variables namely; current (Amp), voltage
(volts) and gas flow rate (L/min) and the response (fluidity) is presented in Figure 5
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Figure 5: Design matrix showing the real values and the experimental values

The model summary which shows the factors and their lowest and highest values including the
mean and standard deviation is presented as shown in figure6; Result of figure 6 revealed that the
model is of the quadratic type which requires the polynomial analysis order as depicted by a
typical response surface design. For fluidity, the minimum value was observed to be
117.059ms/kg, with a maximum value of 162.996ms/kg, mean value of 136.842 and standard

deviation of 11.

222.
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To validate the suitability of the quadratic model in analyzing the experimental data, the

Figure 6: RSM design summary

sequential model sum of squares were calculated for Fluidity as presented in figure 7
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Figure 7: Sequential model sum of square for Fluidity

The sequential model sum of squares table shows the accumulating improvement in the model fit
as terms are added. Based on the calculated sequential model sum of square, the highest order
polynomial where the additional terms are significant and the model is not aliased was selected
as the best fit. From the results of figure 7 it was observed that the cubic polynomial was aliased
hence cannot be employed to fit the final model. In addition, the quadratic and 2FI model were
suggesed as the best fit thus justifying the use of quadratic polynomial in this analysis

To test how well the quadratic model can explain the underlying variation associated with the
experimental data, the lack of fit test was estimated for fluidity. Model with significant lack of fit
cannot be employed for prediction. Results of the computed lack of fit is presented in Figure 8
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Figure 8: Lack of fit test for Fluidity
From the results of figure8, it was again observed that the quadratic polynomial had a non-
significant lack of fit and was suggest for model analysis while the cubic polynomial had a
significant lack of fit hence aliased to model analysis.
The model summary statistics computed for fluidity is presented in figure 9
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Figure 9: Model summary statistics for Fluidity

The model summary statistics of models fit shows the standard deviation (Root MSE), the r-
squared and adjusted r-squared, predicted r-squared and the PRESS statistic for each complete
model. Low standard deviation, R-Squared near unity and relatively low PRESS are the optimum
criteria for defining the best model source. Based on the results of figure 9 the quadratic
polynomial model was suggested while the cubic polynomial model was aliased hence, the
quadratic polynomial model was selected for this analysis.

Analysis of the model standard error was employed to assess the suitability of response surface
methodology using the guadratic model to maximize the fluidity. The computed standard errors
for the selected responses is presented in figure 10

File Edit Wiew Display Options Design Tools Help

[C1 notes for FLUIDITY
i 11 Design (Coded)

fix) Model

Dl + |G| &7
== Results El Graphs

c2 0.26 1.02 00178 40.4 % 2.7 % 899 %
=Basis Std. Dev.=1.0

I e | | |
- |:1] Graph Columns Power at 5 % alpha level for effect of
-] Evamation Term StdErr= VIF Ri-Squared 0.5 Std. Dew. 1 Std. Dew. 2 Std. Dew.
i H] Analysis 0.27 1.00 0.0000 12.3 % 38.6 % 91.4 %
i i ] surface Tension (& ||
B 0.27 1.00 0.0000 13.3 % 38.6 % 91.4 %
Fluidity (Analyzed) |~
TR o _ 0.27 1.00 0.0000 12.3 % 38.6 % 91.4 %
i _J_‘| Kinematic Wiscosity |—
L Ag - AB 0.35 1.00 0.0000 9.8 % 24.9 % 722 %
L. A Optimization —
.37 Numerical AC 0.35 1.00 0.0000 9.8 % 24.9% 72.2 %
- Graphical BC 0.35 1.00 0.0000 9.8 % 24.9 % T2.2 %
.. ¥:] Point Prediction Az 0.28 1.02 0.0179 40.4 % 92.7 % 99.9 %
B2 0.26 1.02 0.0179 40.4 % 92.7 % 99.9 %

Figure 10: Result of computed standard errors

From the results of figure 10, it was observed that the model possess a low standard error ranging
from 0.27 for the individual terms, 0.35 for the combine effects and 0.26 for the quadratic terms.
Standard errors should be similar within type of coefficient; smaller is better. The error values
were also observed to be less than the model basic standard deviation of 1.0 which suggests that
response surface methodology was ideal for the optimization process. Variance inflation factor
(VIF) of approximately 1.0 as observed in Table 11 was good since ideal VIF is 1.0. VIF's
above 10 are cause for alarm, indicating coefficients are poorly estimated due to
multicollinearity. In addition, the Ri-squared value was observed to be between 0.0000 to 0.0179
which is good. High Ri-squared (above 1.0) means that design terms are correlated with each
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other, possibly leading to poor models. The correlation matrix of regression coefficient is
presented in figure 11
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Figure 11: Correlation matrix of regression coefficients

Lower values of the off diagonal matrix as observed in Table 11 indicates a well fitted model
that is strong enough to navigate the design space and adequately optimize the selected response
variables. From the results of figure 11, it was observed that the off diagonal matrix had
coefficients that were approximately 0.00 which is an indication that the quadratic model was the
ideal one for this analysis since off diagonal matrix greater than 0.00 is cause for alarm
indicating a model having coefficients that are poorly correlated.

In assessing the strength of the quadratic model towards maximizing the fluidity, one way
analysis of variance (ANOVA) was done and result is presented in figure 12
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Figure 12: ANOVA table for validating the model significance towards maximizing the
fluidity

Analysis of variance (ANOVA) was needed to check whether or not the model is significant and
also to evaluate the significant contributions of each individual variable, the combined and
quadratic effects towards each response.
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From the result of figure 12, the Model F-value of 18.67 implies the model is significant. There
is only a 0.01% chance that a "Model F-Value™ this large could occur due to noise. Values of
"Prob > F" less than 0.0500 indicate model terms are significant. In this case A, C, AC, BC, A2,
B2 are significant model terms. Values greater than 0.1000 indicate the model terms are not
significant. The "Lack of Fit F-value" of 0.74 implies the Lack of Fit is not significant relative to
the pure error. There is a 62.61% chance that a "Lack of Fit F-value" this large could occur due
to noise. Non-significant lack of fit is good as it indicates a model that is significant.

To validate the adequacy of the quadratic model based on its ability to maximize the fluidity and,
the goodness of fit statistics presented in figure 13 was employed;
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Figure 4.19: GOF statistics for validating model significance towards maximizing fluidity

From the result of figure 13, it was observed that the "Predicted R-Squared” value of 0.7721 is
in reasonable agreement with the "Adj R-Squared" value of 0.8933. Adequate precision
measures the signal to noise ratio. A ratio greater than 4 is desirable. The computed ratio of
18.038as observed in figure 13 indicates an adequate signal. This model can be used to navigate
the design space and maximize the fluidity

To obtain the optimal solution, we first consider the coefficient statistics and the corresponding
standard errors. The computed standard error measures the difference between the experimental
terms and the corresponding predicted terms. Coefficient statistics for fluidity is presented in
figure 14
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Figure 14: Coefficient estimates statistics towards maximizing fluidity
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The optimal equation which shows the individual effects and combines interactions of the
selected input variables (current, voltage and gas flow rate) against (fluidity) is presented based
on the coded variables in figure 15.
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Figure 15: Optimal equation in terms of coded factors for maximizing fluidity

The optimal equation which shows the individual effects and combine interactions of the
selected input variables (current, voltage and gas flow rate) against (fluidity is presented in actual
factors in figure 16
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Figure 16: Optimal equation in terms of actual factors for maximizing fluidity

The diagnostics case statistics which shows the observed values of each response variable

(fluidity) against the predicted values is presented in figure 17 the diagnostic case statistics
actually give insight into the model strength and the adequacy of the optimal second order
polynomial equation.
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Figure 17: Diagnostics case statistics report of observed and predicted fluidity

To assess the accuracy of prediction and established the suitability of response surface
methodology using the quadratic model, a reliability plot of the observed and predicted values of
fluidity was obtained as presented in Figures 18
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Figure 18: Reliability plot of observed versus predicted Fluidity Figure 19: Normal
probability plot of student zed residuals for Fluidity

To accept any model, its satisfactoriness must first be checked by an appropriate statistical
analysis output. To diagnose the statistical properties of the fluidity model, the normal
probability plot of residual presented in Figure 19

The normal probability plot of student zed residuals was employed to assess the normality of the
calculated residuals. Results of Figures 19revealed that the computed residuals are approximately
normally distributed an indication that the model developed is satisfactory and the data employed
are devoid of possible outliers.
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To determine the presence of a possible outlier, the cook’s distance plot was generated for the
fluidity. The cook’s distance is a measure of how much the regression would change if the
outlier is omitted from the analysis. A point that has a very high distance value relative to the
other points may be an outlier and should be investigated. The generated cook’s distance is
presented in Figures 20
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Figure 20: Generated cook’s distance for Fluidity Figure 21: Effect of current and voltage
on fluidity

To study the effects of combine input variables on fluidity 3D surface plots is presented in Figure
21 The 3D surface plot as observed in Figure 22 shows the relationship between the input
variables (current, voltage and gas flow rate) and the response variable (fluidity). It is a 3
dimensional surface plot which was employed to give a clearer concept of the response surface.
Although not as useful as the contour plot for establishing responses values and coordinates, this
view may provide a clearer view of the surface. As the colour of the curved surface gets darker,
the fluidity increases. The presence of a coloured hole at the middle of the upper surface gave a
clue that more points lightly shaded for easier identification fell below the surface.

Finally, numerical optimization was performed to ascertain the desirability of the overall model.
In the numerical optimization phase, we ask design expert to determine the optimum current
(Amp), voltage (volts) and gas flow rate (L/min) that will maximize fluidity The interphase of
the numerical optimization showing the objective function is presented in Figure 23
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Figure 23: Interphase of numerical optimization model for maximizing the fluidity

The numerical optimization generated about sixteen (16) optimal solutions which are presented

in figure 24
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Figure 24: Optimal solutions of numerical optimization model

From the results of figure 24, it was observed that a current of 150amp, voltage of 20volts and
gas flow rate of 17.00L/min will produce a weld material with, Fluidity of 143.331ms/kg. This
solution was selected by design expert as the optimal solution with a desirability value of
94.60%.

The desirability bar graph which shows the accuracy with which the model is able to predict the
values of the selected input variables and the corresponding responses is presented in Figure 25.
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Figure 25: Prediction accuracy of numerical optimzation
It can be deduce from the result of Figure 25 that the model developed based on response surface
methodology and optimized using numerical optimization method, predicted Fluidity with an
accuracy level of 94.57%

The contour plots showing fluidity variable against the optimized value of the input variable is
presented in Figure 26
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Figure 26: Predicting fluidity using contour plot

A plot of desirability against the input variables is presented in figure 27
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Figure 27: Predicting desirability using contour plot

As presented in Figures 27, the contour plot can be employed to predict the optimum values of
the input variables based on the flagged response variables.

Conclusion

In this study, the response surface methodology was used to optimize the molten, metal
properties such as fluidity of gas tungsten arc mild steel welds. A model was developed using the
Response surface methodology (RSM), the Result revealed that the model is of the quadratic
type which requires the polynomial analysis order as depicted by a typical response surface
design.

In assessing the strength of the quadratic model towards optimizing molten metal fluidity, one
way analysis of variance (ANOVA) was done for each response variable. To validate the
adequacy of the model based on its ability to predict its target response, the goodness of fit
statistics was employed. Coefficient of determination R2 values of 0.9438 for metal fluidity
model.
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Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. Adequate
precision values of 18.038 which indicates adequate signal. The diagnostic case statistics actually
give insight into the model strength and the adequacy of the optimal second order polynomial
equation. To assess the accuracy of prediction and established the suitability of response surface
methodology using the quadratic model, a reliability plot of the observed and predicted values of
each response were obtained.

From the results, it was observed that a current of 150.00 Amp, voltage of 20 volt and a gas flow
rate of 17 L/min will produce a welded material having fluidity 143.331 at a desirability of
0.946. Response surface methodology using numerical optimization was effective in predicting
the fluidity. It was also relevant in determining the exact mathematical relationship between the
input parameters (voltage, current and gas flow rate) and the response variables.
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