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Abstract 

The law of conservation of angular momentum lets us reduce problems about motion in a central 

field to problems with one degree of freedom. Thanks to this motion in a central field can be 

completely determined.  
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1. Introduction 

 We look at the motion of a point (of mass 1) in a central field on the plane: 

, ( )
U

U U r


  


r
r

 

It is natural to use polar coordinates ,r  . 

By the law of conservation of angular momentum the quantity 2( ) ( )M t r t  is constant 

(independent of t ). 

Theorem . For the motion of a material point of unit mass in a central filed the distance from the 

center of the field varies in the same way as r varies in the one-dimensional problem with 

potential energy 
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Proof. Differentiating the relation shown ( rre r e r ) we find  
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Therefore the equation of motion in polar coordinates takes the form 
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But, by the law of conservation of angular momentum,  
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Where M  is a constant independent of t , determined by the initial conditions.Therefore, 
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The quantity ( )V r is called the effective energy. 

Remark The total energy in the derived one-dimensional problem 
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is the same as the total energy in the original problem 
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Since  
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2.  Integration of the equation of motion 

The total energy in the derived one-dimensional problem is conserved. 

Consequently, the dependence of r  is defined by the quadrature 
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,and the equation of the orbit in polar coordinates is found by 

quadrature, 
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3. Investigation of the orbit 

We fix the value of the angular momentum at M . The variation of r with time is easy to 

visualize, if one draws the graph of the effective potential energy ( )V r (Figure 1)  

 
Figure 1 Graph of the effective potential energy 

Let E  be the value of the total energy. All orbits corresponding to the given E and M lie in the 

region ( )V r E . On the boundary of this region, V E ,i.e., 0r  .Therefore the velocity of the 

moving point, in general, is not equal to zero since 0  for 0M  . 

The inequality ( )V r E gives one or several annular regions in the plane: 

min max0 r r r    . 

If min max0 r r r    ,then the motion is bounded and takes place inside the ring between the 

circles of radius minr and maxr . 

The shape of an orbit is shown in Figure 2.  

 
Figure 2 Qrbit of a point in a central field 
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The angle  varies monotonically while r oscillates periodically between 
minr and 

maxr .The 

points where 
minr r are called pericentral, and where 

maxr r , apocentral (if the cebter is the 

earth-perigee and apogee; if it is the sun-perihelion and aphelion;if it is the moon-perilune and 

apolune). 

Each of the rays leading from the center to the apocenter or to the pericenter is an axis of 

symmetry of the orbit. 

In general, the orbit is not closed:the angle between the successive pericenters and apocenters is 

given by the integral 

max

min

2 d
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
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The angle between two successive pericenters is twice as big. 

The orbit is closed if the angle  is commensurable with 2 ,i.e., if 
2 m

n


  ,where m and 

n are integers. 

 It can be shown that if the angle  is not commensurable with 2 ,then the orbit is everywhere 

dense in the annulus (Figure 3). 

 
Figure 3 Orbit dense in an annulus 

If min maxr r .i.e., E is the value of V at a minimum point, then the annulus degenerates to a 

circle, which is also the orbit. 

We now look at the case maxr   .If lim ( ) lim ( )
r r

U r V r U
 

  ,then it is possible for orbits to go 

off to infinity. If the initial energy E is larger than U ,then the point goes to infinity with finite 

velocity 2( )r E U   . We notice that if ( )U r approaches its limit slower than 
2r 
,then the 

effective potential V will be attracting at infinity (here we assume that the potential U is 

attracting at infinity). 
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If , as 0r  , ( )U r does not grow faster than 
2

22

M

r
,then min 0r  and the orbit never approaches 

the center .If, however, 
2

2
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  the center of the field is possible even in finite (for 

example, in the field 
3

1
( )U r

r
  ). 

4. Kepler’s problem 

This problem concerns motion in a central field with potential 
k

U
r

  and there 

2

2
( )

2

k M
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r r
   (Figure4)， 

 

Figure 4 Effective potential of the Kepler problem 

 

By the general formula 
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Integrating, we get  
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. 

 To this expression we should have added an arbitrary constant. We will assume it equal to zero; 

this is equivalent to the choice of an origin of reference for the angle  at the pericenter. We 

introduce the following notation: 
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Now we get 

1
arccos

p

r

e
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
 ,i.e., 
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. 

This is so-called focal equation of a conic section. The motion is bounded for 0E  . Then 1e  , 

i.e., the conic section is an ellipse. The number p is called the parameter of the ellipse, and e  the 

eccentricity. 
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